Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Xét ΔBAC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔBAC vuông tại A có
\(AB=BC\cdot\sin60^0\)
\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)
Áp dụng định lí Ceva cho tam giác ABC có 3 cát tuyến AH,BM,CD đồng quy: \(\frac{MA}{MC}.\frac{HC}{HB}.\frac{DB}{DA}=1\Rightarrow\frac{HC}{HB}=\frac{AD}{BD}\)
(Vì M trung điểm AC nên \(\frac{MA}{MC}=1\))
(Định lí Ceva này bạn có thể lên google search để nắm rõ, Định lí này chỉ học sinh trong đội tuyển mới học thoi)
Vì CD là phân giác \(\widehat{BCA}\)nên \(\frac{CA}{CB}=\frac{DA}{DB}\Rightarrow\frac{AC}{BC}=\frac{HC}{HB}=\frac{BC-HB}{HB}=\frac{BC}{HB}-1\)
\(\Rightarrow AC=\frac{BC^2}{HB}-BC=\frac{AB^2+AC^2}{HB}-BC=\frac{HB.BC+AC^2}{HB}-BC=\frac{AC^2}{HB}\Rightarrow AC=HB\)
( Chỗ này áp dụng định lí Pythagoras: BC2 = AB2+AC2 và Hệ thức lượng tam giác vuông AB2=HB.BC)
Có \(\hept{\begin{cases}AB^2=HB.BC\\BC^2=AB^2+AC^2\end{cases}\Rightarrow\hept{\begin{cases}AB^2=aAC\\AB^2=a^2-AC^2\end{cases}}\Rightarrow\hept{\begin{cases}AB=\sqrt{aAC}\\AC^2+aAC-a=0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}AC=\frac{-a+\sqrt{a^2+4a}}{2}=\frac{2a}{a+\sqrt{a^2+4a}}\\AB=\sqrt{aAC}=\sqrt{\frac{2a^2}{a+\sqrt{a^2+4a}}}\end{cases}}\)
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
b) Xét ΔABC có AE là tia phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BE}{3}=\dfrac{CE}{4}\)
mà BE+CE=BC=5cm(gt)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{BC}{7}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BE}{3}=\dfrac{5}{7}\\\dfrac{CE}{4}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BE=\dfrac{15}{7}\left(cm\right)\\CE=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)
Vậy: \(BE=\dfrac{15}{7}cm;CE=\dfrac{20}{7}cm\)
1.
\(a,\sin\widehat{B}=\sin60^0=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}\Leftrightarrow AC=\dfrac{12\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\\ b,AC^2=CH\cdot BC\left(HTL.\Delta\right)\\ \Rightarrow CH=\dfrac{AC^2}{BC}=9\left(cm\right)\)
Tim Gia Tri Nho Nhat Cua
a) A = x - 4 can x + 9
b) B = x - 3 can x - 10
c ) C = x - can x + 1
d ) D = x + can x + 2