Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chug
Do đó: ΔHBA\(\sim\)ΔABC
Suy ra: BH/BA=BA/BC
hay \(AB^2=BH\cdot BC\)
d: Xét ΔBAC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
Do đó: BD=30/7(cm); CD=40/7(cm)
a) Xét tam giác ABC và tam giác HBA có :
∠ABC chung
∠BAC=∠BHA = 90
=> ΔABC ∼ ΔHBA (g.g)
b)Vì ΔABC ∼ ΔHBA
=> AB/BC = HB/BA (cặp cạnh tỉ lệ tương ứng)
=> AB^2 = BC.BH (tính chất tỉ lệ thức)
c) Áp dụng định lý Pytago vào tam giác ABC vuông tại A có :
BC^2= AB^2 +AC^2 = 9^2+12^2=225
=> BC=15
Vì AB^2= BC.BH
=> 9^2 = 15.BH =>BH = 5,4
Mà BH + CH = BC=15
=> CH = 9,6
Áp dụng định lý Pytago vào tam giác ABH vuông tại H có :
AB^2= AH^2+BH^2
=> AH^2 = AB^2 -BH^2 = 9^2 - 5,4^2 = 51,84
=> AH = 7,2
d) Vì BD là phân giác góc B
=> AD/DC = AB/BC (tính giác phân giác trong tam giác)
=> AD/AB = DC/BC = (AD+DC)/(AB+BC)= AC/(AB+BC)= 12/(9+15)=0,5 (tính chất tỉ lệ thức)
=> AD = 0,5 . AB = 0,5 . 9 =4,5
DC = 0,5 . BC = 0,5 . 15 =7,5
Lời giải:
a. Xét tam giác $ABC$ và $HBA$ có:
$\widehat{BAC}=\widehat{BHA}=90^0$
$\widehat{B}$ chung
$\Rightarrow \triangle ABC\sim \triangle HBA$ (g.g)
b.
Từ tam giác đồng dạng trên ta suy ra:
$\frac{AB}{HB}=\frac{BC}{BA}\Rightarrow AB^2=HB.BC$
c.
$BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=15$ (cm)
$HB=\frac{AB^2}{BC}=\frac{9^2}{15}=5,4$ (cm)
$CH=BC-HB=15-5,4=9,6$ (cm)
$AH=\frac{AB.AC}{BC}=\frac{9.12}{15}=7,2$ (cm)
d.
Theo tính chất tia phân giác: $\frac{AD}{DC}=\frac{AB}{BC}=\frac{9}{15}=\frac{3}{5}$
$\Rightarrow \frac{AD}{AC}=\frac{3}{8}$
$\Rightarrow AD=\frac{3}{8}AC=4,5$ (cm)
$CD=AC-AD=12-4,5=7,5$ (cm)
Bài 2
1,ABCD là hình thang cân => góc adc=góc bcd=60 độ (1)
ad//be, ab//de=> abed là hình bình hành=> ad=be mà ad=bc=> be=bc(2)
từ (1) và(2) => tam giác bec đều
2,ta có ab=de=15cm, =>ec=dc-de=49-15=34cm=bc
chu vi hình thang abcd là:
15+49+34+34=132cm
3,kẻ đường cao bh của tam giác bcd, đường cao dk của tam giác abd
ta có bh=dk
Sabd/Sbcd=dk.ab/2 : (bh.dc/2)=ab/dc=15/49