Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔADE và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(=\dfrac{1}{3}\right)\)
\(\widehat{DAE}=\widehat{BAC}\)(hai góc đối đỉnh)
Do đó: ΔADE\(\sim\)ΔABC(c-g-c)
Suy ra: \(k=\dfrac{AD}{AB}=\dfrac{1}{3}\)
a) Sửa đề: ΔABC\(\sim\)ΔANM
Xét ΔABC vuông tại A và ΔANM vuông tại A có
\(\dfrac{AB}{AN}=\dfrac{AC}{AM}\left(\dfrac{24}{13.5}=\dfrac{32}{18}\right)\)
Do đó: ΔABC\(\sim\)ΔANM(c-g-c)
b) Ta có: ΔABC\(\sim\)ΔANM(cmt)
nên \(\widehat{ABC}=\widehat{ANM}\)(hai góc tương ứng)
mà \(\widehat{ABC}\) và \(\widehat{ANM}\) là hai góc ở vị trí so le trong
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: \(\left\{{}\begin{matrix}\dfrac{AD}{AB}=\dfrac{2AB}{AB}=2\\\dfrac{AE}{AC}=\dfrac{2AC}{AC}=2\end{matrix}\right.\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét tam giác ADE và tam giác ABC ta có:
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(cmt\right)\)
Góc DAE = Góc BAC (đối đỉnh)
\(\Rightarrow\Delta ADE\sim\Delta ABC\left(c-g-c\right)\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{ED}{BC}=\dfrac{AE}{AC}\)
a: Xét ΔABC và ΔCBM có
BA/BC=BC/BM
góc B chung
=>ΔABC đồg dạng với ΔCBM
=>AC/CM=BC/BM=2/3
=>10/CM=2/3
=>CM=15cm
b: ΔABC đồng dạng với ΔCBM
=>góc ACB=góc CMB
mà góc CMB=góc ACM
nên góc ACB=góc ACM
=>CA là phân giác của góc MCB
ta lay Ab chia cho 2000 jsfuigasfugsuiegSUIBBUIHRDUIPOHGSDUFGHUSUHIUSIUGSRG
1,3: Xet ΔADE và ΔACB có
AD/AC=AE/AC
góc DAE=góc CAB
=>ΔADE đồng dạng vói ΔACB
=>góc ADE=góc ACB
=>DE//BC
2: DE/CB=AD/AC=3/10