Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Theo bài ra ta có:
2A=B=C ( góc) mà A+B+C = 180 độ
=> A+2A+2A= 180 độ
<=> 5A=180 dộ
A= 36 độ => B=C= 72 độ
b, Ta có: BD là tia phân giác của góc B => ABD = A
=> tam giác DAB cân tại D => AD=BD
c,
DA= DC mới lm đc
số đo các góc A,B,C lần lượt tỉ lệ với 3; 2; 1
=> A/3 = B/2 = C/1
=> (A+B+C)/(3+2+1) = A/3 = B/2 = C/1
A + B + C = 180
=> 180/6 = 30 = A/3 = B/2 = C/1
=> A = 30.3 = 90
B = 30.2 = 60
C = 30
a)XÉT\(\Delta ABC\)CÓ
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)
gọi các GÓC A,B,C LẦN LƯỢT LÀ a,b,c TỈ LỆ VỚI 3;2;1
\(\Rightarrow a:b:c=3:2:1\)
\(\Rightarrow\frac{a}{3}=\frac{b}{2}=\frac{c}{1}\)và \(a+b+c=180\)
theo tính chất dãy tỉ số bằng nhau có
\(\frac{a}{3}=\frac{b}{2}=\frac{c}{1}=\frac{a+b+c}{3+2+1}=\frac{180}{6}=30\)
do đó \(\frac{a}{3}=30\Rightarrow a=3.30=90\)
\(\frac{b}{2}=30\Rightarrow b=2.30=60\)
\(\frac{c}{1}=30\Rightarrow c=1.30=30\)
vậy \(\widehat{A}=90^0;\widehat{B}=60^o;\widehat{C}=30^o\)
Bài 1: Ta có hình vẽ sau:
B A C M E
a)Xét ΔABM và ΔECM có:
BM = CM (gt)
\(\widehat{AMB}=\widehat{EMC}\) (đỗi đỉnh)
MA = ME (gt)
=> ΔABM = ΔACM (c.g.c) (đpcm)
b) Vì ΔABM = ΔECM (ý a)
=> \(\widehat{MAB}=\widehat{MEC}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> AB // CE (đpcm)
Bài 5: Ta có hình vẽ sau:
O A B D C x y E
a) Vì OA = OB (gt) và AC = BD (gt)
=> OC = OD
Xét ΔOAD và ΔOBC có:
OA = OB (gt)
\(\widehat{O}\) : Chung
OC = OD (cm trên)
=> ΔOAD = ΔOBC (c.g.c)
=> AD = BC (2 cạnh tương ứng)(đpcm)
b) Vì ΔOAD = ΔOBC(ý a)
=> \(\widehat{OBC}=\widehat{OAD}\) và \(\widehat{ODA}=\widehat{OCB}\)
(những cặp góc tương ứng)
Xét ΔEAC và ΔEBD có:
\(\widehat{OBC}=\widehat{OAD}\) (cm trên)
AC = BD (gt)
\(\widehat{ODA}=\widehat{OCB}\) (cm trên)
=> ΔEAC = ΔEBD (g.c.g) (đpcm)
c) Vì ΔEAC = ΔEBD (ý b)
=> EA = EB (2 cạnh tương ứng)
Xét ΔOAE và ΔOBE có:
OA = OB (gt)
\(\widehat{OBC}=\widehat{OAD}\) (đã cm)
EA = EB (cm trên)
=> ΔOAE = ΔOBE (c.g.c)
=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)
=> OE là phân giác của \(\widehat{xOy}\)