Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái téo thiếp :
To cá:
\(\begin{cases}\text{∠}cOa=55^0\\\text{∠}aOb=35^0\end{cases}\)
=> ∠cOa>∠aOb
=> Ob nằm giữa Oc và Oa
=> ∠cOa=∠cOb+∠bOa
=> ∠bOa=∠cOa-∠cOb
=550-350
=200
xong câu a nà
a. aOm = 1800-(aOb+aOc)
aOm = 1800 - (350 + 550)
aOm = 1800- 900
aOm = 900
bOm = aOm + aOb
bOm = 900 + 350
bOm = 1150
b. aOn = \(\frac{aOm}{2}\)
aOn = \(\frac{90^0}{2}\)= 450
mOn = aOn = 900
\(a^2=\frac{a^3-b^3-c^3}{a-b-c}\)
<=> \(a^2\left(b+c\right)=b^3+c^3\)
<=> \(a^2=b^2+c^2-bc\)(1)
Theo đlí cosin ta có: \(a^2=b^2+c^2-2bc.\cos A\)(2)
Từ (1) ; (2) => \(2\cos A=1\)
<=> \(\cos A=\frac{1}{2}\)
=> ^A = 60 độ
a: BC/sinA=2R
=>2R=3/sin40
=>\(R\simeq2,33\left(cm\right)\)
b: góc B=180-40-60=80 độ
\(\dfrac{AC}{sinB}=\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\)
=>AC/sin80=3/sin40=AB/sin60
=>\(AC\simeq5\left(cm\right)\) và \(AB\simeq4,04\left(cm\right)\)
c: \(AM=\sqrt{\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}}=\sqrt{\dfrac{5^2+4,04^2}{2}-\dfrac{3^2}{4}}\simeq4,29\left(cm\right)\)