K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC(ΔABC cân tại A)

\(\widehat{A}\) chung

Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)

b) Ta có: ΔABH=ΔACK(cmt)

⇒AH=AK(hai cạnh tương ứng)

Ta có: AK+KB=AB(do K∈AB)

AH+HC=AC(do H∈AC)

mà AB=AC(do ΔABC cân tại A)

và AH=AK(cmt)

nên KB=HC

Xét ΔKBI vuông tại K có

\(\widehat{KIB}+\widehat{IBK}=90^0\)(hai góc phụ nhau)(1)

Xét ΔHIC vuông tại H có

\(\widehat{HIC}+\widehat{HCI}=90^0\)(hai góc phụ nhau)(2)

Từ (1) và (2) suy ra

\(\widehat{KIB}+\widehat{IBK}=\widehat{HIC}+\widehat{HCI}\)

\(\widehat{KIB}=\widehat{HIC}\)(hai góc đối đỉnh)

nên \(\widehat{KBI}=\widehat{HCI}\)

Xét ΔKIB vuông tại K và ΔHIC vuông tại H có

KB=HC(cmt)

\(\widehat{KBI}=\widehat{HCI}\)(cmt)

Do đó: ΔKIB=ΔHIC(cạnh góc vuông-góc nhọn kề)

⇒IB=IC(hai cạnh tương ứng)

c) Xét ΔAIK vuông tại K và ΔAIH vuông tại H có

AI là cạnh chung

AK=AH(cmt)

Do đó: ΔAIK=ΔAIH(cạnh huyền-cạnh góc vuông)

\(\widehat{KAI}=\widehat{HAI}\)(hai góc tương ứng)

mà tia AI nằm giữa hai tia AK,AH

nên AI là tia phân giác của \(\widehat{KAH}\)

hay AI là tia phân giác của \(\widehat{BAC}\)

Ta có: AI là đường phân giác ứng với cạnh đáy BC của ΔABC cân tại A(do AI là tia phân giác của \(\widehat{BAC}\))

nên AI cũng là đường cao ứng với cạnh BC của ΔABC cân tại A(định lí tam giác cân)

⇒AI⊥BC(đpcm)

19 tháng 3 2019

( Bạn tự vẽ hình nha)

a) Xét tam giác ABH và tam giác ACK có:

+Góc K = Góc H = 900

+AB=AC ( tam giác ABC cân )

+Góc A chung

=> Tam giác ABH = tam giác ACK ( Cạnh huyền - góc nhọn )

19 tháng 3 2019

a, xét tam giác ABH và tam giác ACK có:

             AB=AC(gt)

              \(\widehat{A}\)chung

=> tam giác ABH = tam giác ACK( CH-GN)

b,vì tam giác ABC cân tại A nên \(\widehat{B}\)=\(\widehat{C}\)mà \(\widehat{ABH}\)=\(\widehat{ACK}\)suy ra \(\widehat{IBC}\)=\(\widehat{ICB}\)

   => tam giác IBC cân tại I 

   =>IB=IC

c, xét tam giác IAB và tam giác IAC có:

             IA cạnh chung

             AB=AC(gt)

             IB=IC( theo câu b)

=> tam giác IAB= tam giác IAC (c.g.c)

=>\(\widehat{IAB}\)=\(\widehat{IAC}\)

kéo dài AI xuống cạnh BC, gọi đó là điểm M

Xét tam giác AMB và tam giác AMC có:

                  AM cạnh chung

                  \(\widehat{MAB}\)=\(\widehat{MAC}\)(cmt)

                  AB=AC(gt)

=> tam giác AMB= tam giác AMC( c.g.c)

=>\(\widehat{AMB}\)=\(\widehat{AMC}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AMB}\)=\(\widehat{AMC}\)=90 độ

=> AI vuông góc vs BC

12 tháng 2 2020

A B C K H I

a) Xét △ABH và △ACK có:

AHB = AKC (= 90o)

AB = AC (△ABC cân)

KAH: chung

=> △ABH = △ACK (ch-gn)

=> AH = AK (2 cạnh tương ứng)

b) Xét △AIK và △AIH có:

AKI = AHI (= 90o)

AI: chung

AK = AH (cmt câu a)

=> △AIK = △AIH (ch-cgv)

=> IAK = IAH (2 góc tương ứng)

=> AI là phân giác BAC

12 tháng 2 2020

2148 x 206 = ?????

14 tháng 2 2021

Tgiac ABC cân tại A => AB = AC và góc ABC = ACB

a) Xét tgiac ABH và ACK có:

+ AB = AC

+ chung góc A

+ góc AHB = AKC = 90 độ

=> tgiac ABH = ACK (ch-gn)

=> góc ABH = ACK

Mà góc ABC = ACB

=> ABC - ABH = ACB - ACK

=> góc OBC = OCB

=> tgiac OBC cân tại O

=> đpcm

b) Tgiac OBC cân tại O => OB = OC

Xét tgiac OBK và OCH có:

+ góc OKB = OHC = 90 độ

+ OB = OC

+ góc KBO = HCO (cmt)

=>  tgiac OBK = OCH (ch-gn)

=> đpcm

c) Xét tgiac ABO và ACO có:

+ OB = OC

+ AO chung

+ AB = AC

=> tgiac ABO = ACO (ccc)

=> góc BAO = CAO

=> tia AO là tia pgiac của góc BAC (1)

Xét tgiac ABI và ACI:

+ AI chung

+ AB = AC

+ IB = IC

=> tgiac ABI = ACI (ccc)

=> góc BAI = CAI

=> AI là tia pgiac góc BAC (2)

(1), (2) => A, O, I thẳng hàng (đpcm)

9 tháng 4 2015

a) Hai tam giác vuông ABH và  ACK có:

AB = AC(gt)

Góc A chung.

nên ∆ABH = ∆ACK(Cạnh huyền- Góc nhọn)

suy ra AH = AK.

b) Hai tam giác vuông AIK và AIH có:

AK = AH(cmt)

AI cạnh chung

Nên ∆AIK = ∆AIH(cạnh huyền- cạnh góc vuông)

Suy ra GÓC IAK = GÓC IAH

Vậy AI là tia phân giác của góc A

18 tháng 1 2018

a) Hai tam giác vuông ABH và  ACK có:

AB = AC(gt)

Góc A chung.

nên ∆ABH = ∆ACK(Cạnh huyền- Góc nhọn)

suy ra AH = AK.

b) Hai tam giác vuông AIK và AIH có:

AK = AH(cmt)

AI cạnh chung

Nên ∆AIK = ∆AIH(cạnh huyền- cạnh góc vuông)

Suy ra ˆIAK

=ˆIAH

Vậy AI là tia phân giác của góc a

Xét tam giác ABC vuông tại A
BC^2=AB^2+AC^2(định lý Pytago)
AB:AC=5:12<=>AB/5=AC/12

<=>AB^2/25=AC^2/144
theo t/c dãy tỉ số bằng  nhau ta có:
AB^2/25=AC^2/144=AB^2+AC^2/25+144=BC^2/169=BC^2/13^2=(BC/13)^2=(26/13)^2=2^2=4(cm)
=>AB^2=25.4=100=10^2=>AB=10(cm)
AC^2=144.4=576=24^2=>AC=24(cm)
 

3 tháng 2 2019

Thanh Dương copy bài người khác xong thì ghi nguồn vào với ạ =)))