Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( Bạn tự vẽ hình nha)
a) Xét tam giác ABH và tam giác ACK có:
+Góc K = Góc H = 900
+AB=AC ( tam giác ABC cân )
+Góc A chung
=> Tam giác ABH = tam giác ACK ( Cạnh huyền - góc nhọn )
a, xét tam giác ABH và tam giác ACK có:
AB=AC(gt)
\(\widehat{A}\)chung
=> tam giác ABH = tam giác ACK( CH-GN)
b,vì tam giác ABC cân tại A nên \(\widehat{B}\)=\(\widehat{C}\)mà \(\widehat{ABH}\)=\(\widehat{ACK}\)suy ra \(\widehat{IBC}\)=\(\widehat{ICB}\)
=> tam giác IBC cân tại I
=>IB=IC
c, xét tam giác IAB và tam giác IAC có:
IA cạnh chung
AB=AC(gt)
IB=IC( theo câu b)
=> tam giác IAB= tam giác IAC (c.g.c)
=>\(\widehat{IAB}\)=\(\widehat{IAC}\)
kéo dài AI xuống cạnh BC, gọi đó là điểm M
Xét tam giác AMB và tam giác AMC có:
AM cạnh chung
\(\widehat{MAB}\)=\(\widehat{MAC}\)(cmt)
AB=AC(gt)
=> tam giác AMB= tam giác AMC( c.g.c)
=>\(\widehat{AMB}\)=\(\widehat{AMC}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AMB}\)=\(\widehat{AMC}\)=90 độ
=> AI vuông góc vs BC
A B C K H I
a) Xét △ABH và △ACK có:
AHB = AKC (= 90o)
AB = AC (△ABC cân)
KAH: chung
=> △ABH = △ACK (ch-gn)
=> AH = AK (2 cạnh tương ứng)
b) Xét △AIK và △AIH có:
AKI = AHI (= 90o)
AI: chung
AK = AH (cmt câu a)
=> △AIK = △AIH (ch-cgv)
=> IAK = IAH (2 góc tương ứng)
=> AI là phân giác BAC
Tgiac ABC cân tại A => AB = AC và góc ABC = ACB
a) Xét tgiac ABH và ACK có:
+ AB = AC
+ chung góc A
+ góc AHB = AKC = 90 độ
=> tgiac ABH = ACK (ch-gn)
=> góc ABH = ACK
Mà góc ABC = ACB
=> ABC - ABH = ACB - ACK
=> góc OBC = OCB
=> tgiac OBC cân tại O
=> đpcm
b) Tgiac OBC cân tại O => OB = OC
Xét tgiac OBK và OCH có:
+ góc OKB = OHC = 90 độ
+ OB = OC
+ góc KBO = HCO (cmt)
=> tgiac OBK = OCH (ch-gn)
=> đpcm
c) Xét tgiac ABO và ACO có:
+ OB = OC
+ AO chung
+ AB = AC
=> tgiac ABO = ACO (ccc)
=> góc BAO = CAO
=> tia AO là tia pgiac của góc BAC (1)
Xét tgiac ABI và ACI:
+ AI chung
+ AB = AC
+ IB = IC
=> tgiac ABI = ACI (ccc)
=> góc BAI = CAI
=> AI là tia pgiac góc BAC (2)
(1), (2) => A, O, I thẳng hàng (đpcm)
a) Hai tam giác vuông ABH và ACK có:
AB = AC(gt)
Góc A chung.
nên ∆ABH = ∆ACK(Cạnh huyền- Góc nhọn)
suy ra AH = AK.
b) Hai tam giác vuông AIK và AIH có:
AK = AH(cmt)
AI cạnh chung
Nên ∆AIK = ∆AIH(cạnh huyền- cạnh góc vuông)
Suy ra GÓC IAK = GÓC IAH
Vậy AI là tia phân giác của góc A
a) Hai tam giác vuông ABH và ACK có:
AB = AC(gt)
Góc A chung.
nên ∆ABH = ∆ACK(Cạnh huyền- Góc nhọn)
suy ra AH = AK.
b) Hai tam giác vuông AIK và AIH có:
AK = AH(cmt)
AI cạnh chung
Nên ∆AIK = ∆AIH(cạnh huyền- cạnh góc vuông)
Suy ra ˆIAK
=ˆIAH
Vậy AI là tia phân giác của góc a
Xét tam giác ABC vuông tại A
BC^2=AB^2+AC^2(định lý Pytago)
AB:AC=5:12<=>AB/5=AC/12
<=>AB^2/25=AC^2/144
theo t/c dãy tỉ số bằng nhau ta có:
AB^2/25=AC^2/144=AB^2+AC^2/25+144=BC^2/169=BC^2/13^2=(BC/13)^2=(26/13)^2=2^2=4(cm)
=>AB^2=25.4=100=10^2=>AB=10(cm)
AC^2=144.4=576=24^2=>AC=24(cm)
Thanh Dương copy bài người khác xong thì ghi nguồn vào với ạ =)))
a) Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC(ΔABC cân tại A)
\(\widehat{A}\) chung
Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)
b) Ta có: ΔABH=ΔACK(cmt)
⇒AH=AK(hai cạnh tương ứng)
Ta có: AK+KB=AB(do K∈AB)
AH+HC=AC(do H∈AC)
mà AB=AC(do ΔABC cân tại A)
và AH=AK(cmt)
nên KB=HC
Xét ΔKBI vuông tại K có
\(\widehat{KIB}+\widehat{IBK}=90^0\)(hai góc phụ nhau)(1)
Xét ΔHIC vuông tại H có
\(\widehat{HIC}+\widehat{HCI}=90^0\)(hai góc phụ nhau)(2)
Từ (1) và (2) suy ra
\(\widehat{KIB}+\widehat{IBK}=\widehat{HIC}+\widehat{HCI}\)
mà \(\widehat{KIB}=\widehat{HIC}\)(hai góc đối đỉnh)
nên \(\widehat{KBI}=\widehat{HCI}\)
Xét ΔKIB vuông tại K và ΔHIC vuông tại H có
KB=HC(cmt)
\(\widehat{KBI}=\widehat{HCI}\)(cmt)
Do đó: ΔKIB=ΔHIC(cạnh góc vuông-góc nhọn kề)
⇒IB=IC(hai cạnh tương ứng)
c) Xét ΔAIK vuông tại K và ΔAIH vuông tại H có
AI là cạnh chung
AK=AH(cmt)
Do đó: ΔAIK=ΔAIH(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{KAI}=\widehat{HAI}\)(hai góc tương ứng)
mà tia AI nằm giữa hai tia AK,AH
nên AI là tia phân giác của \(\widehat{KAH}\)
hay AI là tia phân giác của \(\widehat{BAC}\)
Ta có: AI là đường phân giác ứng với cạnh đáy BC của ΔABC cân tại A(do AI là tia phân giác của \(\widehat{BAC}\))
nên AI cũng là đường cao ứng với cạnh BC của ΔABC cân tại A(định lí tam giác cân)
⇒AI⊥BC(đpcm)