\(p\left(x\right)=x^4+ax^3+bx^2+cx+d\)

Biết P(1) = 1; P(2) = 3; P(3) =...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2022

Đặt \(f\left(x\right)=10x\)

Khi đó ta có \(f\left(1\right)=10=P\left(1\right)\)\(f\left(2\right)=20=P\left(2\right)\)\(f\left(3\right)=30=P\left(3\right)\)

Do đó \(P\left(x\right)-f\left(x\right)=g\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

\(\Rightarrow P\left(x\right)=10+g\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

Vì \(P\left(x\right)\)là đa thức bậc 4 mà \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\)là đa thức bậc 3 nên \(g\left(x\right)\)là đa thức bậc 1 hay \(g\left(x\right)=x+n\)

Vậy \(P\left(x\right)=\left(x+n\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)+10\)

\(\Rightarrow P\left(12\right)=\left(12+n\right)\left(12-1\right)\left(12-2\right)\left(12-3\right)=\left(n+12\right).11.10.9=990\left(n+12\right)\)

\(=990n+11880\)

Và \(P\left(-8\right)=\left(-8+n\right)\left(-8-1\right)\left(-8-2\right)\left(-8-3\right)=\left(n-8\right)\left(-9\right)\left(-10\right)\left(-11\right)\)\(=-990\left(n-8\right)=-990n+7920\)

Vậy \(\frac{P\left(12\right)+P\left(-8\right)}{10}+25=\frac{990n+11880-990n+7920}{10}+25=\frac{19800}{10}+25=2005\)

10 tháng 8 2018

Ta có:

\(P\left(1\right)=7=7.1^2\)\(P\left(2\right)=28=7.2^2\)\(P\left(3\right)=63=7.3^2\)

\(\Rightarrow\)Đặt \(g\left(x\right)=7x^2\).

Đặt \(Q\left(x\right)=P\left(x\right)-g\left(x\right)\).

Ta có:

\(Q\left(1\right)=Q\left(2\right)=Q\left(3\right)=0\)

\(\Rightarrow x=1;x=2;x=3\)là các nghiệm của đa thức Q(x)

\(\Rightarrow Q\left(x\right)⋮\left(x-1\right);\left(x-2\right);\left(x-3\right)\)

Do Q(x) là đa thức bậc 4 có hệ số cao nhất bằng 1 nên

\(Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right).\)

\(\Rightarrow P\left(x\right)=Q\left(x\right)+g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)+7x^2\)

Ta có:

\(P\left(100\right)=\left(100-1\right)\left(100-2\right)\left(100-3\right)\left(100-m\right)+7.100^2\)

\(=99.98.97\left(100-m\right)+7.100^2==97.98.99.100-97.98.99m+7.100^2\)

\(P\left(-96\right)=\left(-96-1\right)\left(-96-2\right)\left(-96-3\right)\left(-96-m\right)+7.\left(-96\right)^2\)

\(=\left(-97\right).\left(-98\right).\left(-99\right).\left(-96-m\right)+7.96^2\)

\(=\left(-96\right).\left(-97\right).\left(-98\right).\left(-99\right)-\left(-97\right).\left(-98\right).\left(-99\right).m+7.96^2\)

\(=96.97.98.99+97.98.99m+7.96^2\)

\(A=\frac{P\left(100\right)+P\left(-96\right)}{8}\)

\(=\frac{97.98.99.100-97.98.99m+7.100^2+96.97.98.99+97.98.99m+7.96^2}{8}\)

\(=\frac{97.98.99\left(100+96\right)+7.\left(100^2+96^2\right)}{8}=112244867\)

10 tháng 8 2018

Ta có:

\(P\left(1\right)=7=7.1^2\)\(P\left(2\right)=28=7.2^2\)\(P\left(3\right)=63=7.3^2\)

\(\Rightarrow\)Đặt \(g\left(x\right)=7x^2\).

Đặt \(Q\left(x\right)=P\left(x\right)-g\left(x\right)\).

Ta có:

\(Q\left(1\right)=Q\left(2\right)=Q\left(3\right)=0\)

\(\Rightarrow x=1;x=2;x=3\)là các nghiệm của đa thức Q(x)

\(\Rightarrow Q\left(x\right)⋮\left(x-1\right);\left(x-2\right);\left(x-3\right)\)

Do Q(x) là đa thức bậc 4 có hệ số cao nhất bằng 1 nên

\(Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right).\)

\(\Rightarrow P\left(x\right)=Q\left(x\right)+g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)+7x^2\)

Ta có:

\(P\left(100\right)=\left(100-1\right)\left(100-2\right)\left(100-3\right)\left(100-m\right)+7.100^2\)

\(=99.98.97\left(100-m\right)+7.100^2==97.98.99.100-97.98.99m+7.100^2\)

\(P\left(-96\right)=\left(-96-1\right)\left(-96-2\right)\left(-96-3\right)\left(-96-m\right)+7.\left(-96\right)^2\)

\(=\left(-97\right).\left(-98\right).\left(-99\right).\left(-96-m\right)+7.96^2\)

\(=\left(-96\right).\left(-97\right).\left(-98\right).\left(-99\right)-\left(-97\right).\left(-98\right).\left(-99\right).m+7.96^2\)

\(=96.97.98.99+97.98.99m+7.96^2\)

\(A=\frac{P\left(100\right)+P\left(-96\right)}{8}\)

\(=\frac{97.98.99.100-97.98.99m+7.100^2+96.97.98.99+97.98.99m+7.96^2}{8}\)

\(=\frac{97.98.99\left(100+96\right)+7.\left(100^2+96^2\right)}{8}=112244867\)

25 tháng 10 2020

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)

\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)

\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)

\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)

Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình