K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
17 tháng 1 2017
Giả sử f(x)=(x+1)*q(x)+r (vì x+1 có bậc 1 nên dư là số r)
Thay x=-1 ta được: f(-1)=0*q(x)+r= r =(-1)^2017+(-1)^2016+1=1
Vậy dư trong phép chia \(x^{2017}+x^{2016}+1\) cho x+1 là 1
Lời giải:
Đặt \(f(x)=x^{2016}+x^{2015}+x^{200}+x^2=(x^2-1)Q(x)+ax+b\) trong đó, $Q(x)$ là đa thức thương, $ax+b$ là đa thức dư
Ta có:
\(f(1)=1+1+1+1=(1^2-1)Q(1)+a+b\)
\(\Leftrightarrow 4=a+b(1)\)
\(f(-1)=1+(-1)+1+1=[(-1)^2-1]Q(-1)-a+b\)
\(\Leftrightarrow 2=-a+b(2)\)
Từ \((1);(2)\Rightarrow a=1; b=3\)
Vậy đa thức dư là $x+3$