Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ A ( x ) = ax2 + bx + c
=> A(0) = a . 02 + b.0 + c = c mà A(0) = 4 => c = 4
+ A ( x ) = ax2 + bx + c
=> A ( 1 ) = a . 12 + b.1 + c = a + b + c hay A ( 1 ) = a + b + 4 mà A(1) = 9 => a + b = 5
+ A ( x ) = ax2 + bx + c
=> A ( 2 ) = a . 22 + b . 2 + c = 4a + 2b + c hay A ( 2 ) = 4a + 2b + 4 mà A ( 2 ) = 14 => 4a + 2b = 10
4a + 2b = 2a + 2a + 2b = 2a + 10 mà 4a + 2b = 10 => 2a + 10 = 14 => a = 2 => b = 5 - 2 = 3
1. Ta có: h(1)=2 ⇔ a1+b=2 ⇔ b=2-a (1) h(2)=1 ⇔ a2+b=1 ⇔ b=1-2a (2) Từ (1) và (2) => 2-a=1-2a⇔2-1=a-2a⇔1=-a=> a=-1
Thay a=-1 vào (1) ta có: b=2-(-1) => b=3
Vậy b=3 và a=-1
Câu 4:
\(\left(x+1\right)^2\left(y-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\y-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\y-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0-1=-1\\y=0+6=6\end{matrix}\right.\)
Vậy: biểu thức trên bằng 0 khi có x = -1 hoặc y = 6
Bài 5:
\(P=3x^4+5x^2y^2+2x^4+2y^2\)
\(=3x^2x^2+3x^2y^2+2x^2y^2+2x^4+2y^2\)
\(=3x^2\left(x^2+y^2\right)+2x^2\left(y^2+x^2\right)+2y^2\)
\(=3x^22+2x^22+2y^2\)
\(=6x^2+4x^2+2y^2\)
\(=10x^2+2y^2\)
P/s: Hình như đề câu cuối bị nhầm thì phải!
Lời giải:
Ta có: \(\left\{\begin{matrix} P(1)=Q(2)\\ P(-1)=Q(5)\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2+a+4=4-10+b\\ 2-a+4=25-25+b\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -a+b=12\\ a+b=6\end{matrix}\right.\)
\(\Rightarrow 2b=12+6=18\Leftrightarrow b=9\), suy ra \(a=-3\)
b) Theo bài ra ta có:
\(\left\{\begin{matrix} B(0)=4\\ B(1)=3\\ B(-1)=7\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=4\\ a.1^2+b.1+c=a+b+c=3\\ a.(-1)^2+b(-1)+c=a-b+c=7\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} c=4\\ a+b=-1\\ a-b=3\end{matrix}\right.\)
Cộng 2 PT cuối cho nhau: \(\Rightarrow 2a=-1+3=2\Leftrightarrow a=1\)
\(\Rightarrow b=-2\)
Vậy \((a,b,c)=(1,-2,4)\)
Ta có: \(A\left(0\right)=a\cdot0^2+b\cdot0+c=4\Rightarrow c=4\)
Theo đề bài đa thức \(A\left(x\right)\) có nghiệm bằng 1 và 2 nên:
\(\Rightarrow\left\{{}\begin{matrix}a.1^2+b\cdot1+c=0\\a\cdot2^2+b\cdot2+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+4=0\\4a+2b+4=0\end{matrix}\right.\)
\(\Rightarrow a=2,b=-6,c=4\)
Vậy a=2,b=-6,c=4