Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình ghi lộn 1 tí đề bài số 5 là CMR: xy chia hết cho 12
1. a) Cho \(x^2-25=0\)
\(\Rightarrow\left(x-5\right)\left(x+5\right)=0\)
\(\Rightarrow\) x = 5 hoặc x = -5
Vậy \(x=\pm5\)là nghiệm của đa thức đã cho.
b) Cho \(x^2+8x-9=0\)
\(\Rightarrow x^2-x+9x-9=0\)
\(\Rightarrow x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Rightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Rightarrow x=-9\) hoặc \(x=1\)
Vậy \(x=-9\) và \(x=1\) là nhiệm của đa thức đã cho.
Bài 1 :
\(M+N\)
\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)
\(=2xy^2-3x+12-xy^2-3\)
\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)
\(=xy^2-3x+9\)
Bài 1: Ta có: \(\left\{{}\begin{matrix}A=\left(-3x^5y^3\right)^4\ge0\\B=2x^2z^4\ge0\end{matrix}\right.\) với mọi x
Để $A+B=0$ thì \(\left\{{}\begin{matrix}\left(-3x^5y^3\right)^4=0\\2x^2z^4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)
Bài 2: Ta có: \(\left|x-5\right|\ge0\) với mọi x
\(\Rightarrow-3\left|x-5\right|\le0\) với mọi x
Để biểu thức lớn nhất,thì \(-3\left|x-5\right|=0\)
\(\Rightarrow\left|x-5\right|=0\)
Vậy x=5
\(\Rightarrow x=5\)
a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến
M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1
=x4+2x2+1
b) M(1)=14+2.12+1=4
M(−1)=(−1)4+2.(−1)2+1=4
c) Ta có: M(x)=x4+2x2+1
Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.
Bạn ơi M(z)=8+3z^2+-4z+z^5 và N(z)=3-z^5-3^2+4z mới đúng đề nha
Bài làm:
a Sắp xếp nè:
M(z)=-z^5+3z^2+4z+8
N(z)= -z^5-3^2+4z+3
M(z)-N(z)=(-z^5+3z^2+4z+8)-(-z^5-3^2+4z+3)
=-z^5+3z^2+4z+8+z^5+9-4z-3
=(-z^5+z^5)+(4z-4z)+3z^2+(8+9-3)
=3z^2+14
b Cho M(z)-N(z)=0
hay 3z^2+14=0 (theo câu a)
suy ra 3z^2=0-14
3z^2=-14 (vô lí vì 3z^2 luôn lớn hơn hoặc bằng 0 và -14<0)
Vậy Đa thức M(z)-N(z) không có bậc
cách làm: bạn chỉ cần chứng minh đa thức ấy vô lí ở đâu thì đa thúc ây sẽ không có bậc
Chúc học giỏi nhá
mình nói nhầm nghiệm thành bậc