K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

Giải:

Thay \(b=3a+c\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=ax^3+\left(3a+c\right)x^2+cx+d\)

\(=ax^3+3ax^2+cx^2+cx+d\)

Từ đó ta có:

\(f\left(1\right)=a.1^3+3a.1^2+c.1^2+c.1+d\)

\(=a+3a+c+c+d=4a+2c+d\left(1\right)\)

Ta lại có:

\(f\left(-2\right)=a.\left(-2\right)^3+3a.\left(-2\right)^2+c.\left(-2\right)^2\) \(+c.\left(-2\right)+d\)

\(=-8a+12a+4c-2c+d=\) \(4a+2c+d\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra:

\(f\left(1\right)=f\left(-2\right)\left(=4a+2c+d\right)\) (Đpcm)

b) Thay \(b=3a+c\) vào \(f\left(x\right)\) ta được :

\(f\left(x\right)\) \(=ax^{\:3}+\left(3a+c\right)x^2+cx+d\)

\(=ax^{\:3}+3ax^2+cx^2+cx+d\)

\(\Rightarrow f\left(1\right).f\left(2\right)=\left(a.1^3+3a.1^2+c.1^2+c.1+d\right)\left[a.\left(-2\right)^3+3a.\left(-2\right)^2+c\left(-2\right)^2+c\left(-2\right)+d\right]\)

=\(\left(a+3a+c+c+d\right)\left(-8a+12a+4c-2c+d\right)\)

= \(\left(4a+2c+d\right)\left(4a+2c+d\right)\)

= \(\left(4a+2c+d\right)^2\)

Mà a, b , c, d là số nguyên nên f(1) .(f2 ) là bình phương của 1 số nguyên

Câu s bạn tự làm nha

30 tháng 4 2017

tìm x từ 2x-4 rồi thay vào x^2-ax+2 

đặt x^2 -ax+2 bằng 0 sau đó tìm dc a

2 tháng 2 2021

\(f\left(3\right).f\left(-2\right)=\left(9a+3b+c\right)\left(4a-2b+c\right)\)

\(=\left[3\left(a+b\right)+6a+c\right]\left[-2\left(a+b\right)+6a+c\right]\)

\(=\left(6a+c\right)\left(6a+c\right)=\left(6a+c\right)^2\ge0\) (đpcm)

2 tháng 2 2021

Tks anh zai

 

2 tháng 2 2021

Theo bài ra ta có : 

\(f\left(3\right)=a.3^2+3b+c=9a+3b+c\)

\(f\left(-2\right)=a\left(-2\right)^2+b\left(-2\right)+c=4a-2b+c\)

hay \(f\left(3\right).f\left(2\right)\ge0\)

\(\Leftrightarrow\left(9a+3b+c\right)\left(4a-2b+c\right)=0\)

Dấu ''='' xảy ra <=> \(a=b=c=0\)( thỏa mãn điều kiện )