Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dài ... quá :))
A(x) = x3 - 2x + 3x2 - 3/2x + x4 - x3 + 5x - 7 - 0,7x2 + 2x4 - 3/4
= (x3 - x3) + (-2x - 3/2x + 5x) + (3x2 - 0,7x2) + (x4 + 2x4) + (-7 - 3/4)
= 3/2x + 2,3x2 + 3x4 - 31/4
Sắp xếp : A(x) = 3x4 + 0x3 + 2,3x2 + 3/2x - 31/4
b(x) = 3x5 - 12x3 - 6x2 + 2x5 - 2x4 + 4x2 + x5 - 2x4
= (3x5 + x5 + 2x5) - 12x3 + (-6x2 + 4x2) + (-2x4 - 2x4)
= 6x5 - 12x3 - 2x2 - 4x4
Sắp xếp : B(x) = 6x5 - 4x4 - 12x3 - 2x2
Tính :
h(x) = a(x) + b(x)
=> h(x) = (3x4 + 0x3 + 2,3x2+ 3/2x - 31/4) + (6x5 - 4x4 - 12x3 - 2x2)
=> h(x) = 3x4 + 0x3 + 2,3x2 + 3/2x - 31/4 + 6x5 - 4x4 - 12x3 - 2x2
=> h(x) = (3x4 - 4x4) + (0x3 - 12x3) + (2,3x2 - 2x2) + 3/2x - 31/4 + 6x5
=> h(x) = -x4 - 12x3 + 0,3x2 + 3/2x - 31/4 + 6x5
Còn bài trừ tương tự nhưng đổi dấu vế thứ hai thôi ...
a,f(x)=5x3 - 3x +7-x2-x=5x3-x2-4x+7
g(x)=-5x3+4x-3+2x+x2-2=-5x3+x2+6x-5
b, f(x)=5x3-x2-4x+7
g(x)=-5x3+x2+6x-5
h(x)=f(x)+g(x)=0 +0+2x+2
c,Xét h(x)=2x+2=0
=>2x=-2
=>x=-1
Vậy x=-1 là nghiệm của h(x)
a)\(F\left(x\right)=2\left(x^4+x^3\right)+2x-4\left(x^2-x^3-1\right)+4\)
\(=2x^4+2x^3+2x-4x^2+4x^3+4+4\)
\(=2x^4+6x^3+2x-4x^2+2x+8\)
\(G\left(x\right)=5x^4-4\left(3+x^4\right)-2x^2+4x^3+2\left(x^3-x^2+x\right)\)
\(=5x^4-12-4x^4-2x^2+4x^3+2x^3-2x^2+2x\)
\(=x^4+6x^3-4x^2+2x-12\)
b) Tìm \(K\left(x\right)=F\left(x\right)+G\left(x\right)\)
\(\dfrac{+\dfrac{F\left(x\right)=2x^4+6x^3-4x^2+2x+8}{G\left(x\right)=x^4+6x^3-4x^2+2x-12}}{K\left(x\right)=3x^4+12x^3-8x^2+4x-4}\)
Tìm \(H\left(x\right)=F\left(x\right)-G\left(x\right)\)
\(\dfrac{-\dfrac{F\left(x\right)=2x^4+6x^3-4x^2+2x+8}{G\left(x\right)=x^4+6x^3-4x^2+2x-12}}{H\left(x\right)=x^4+0-0+0+20}\)
Bài 1:
a)
\(F+G+H=(x^3-2x^2+3x+1)+(x^3+x-1)+(2x^2-1)\)
\(=2x^3+4x-1\)
b)
\(F-G+H=0\)
\(\Leftrightarrow (x^3-2x^2+3x+1)-(x^3+x-1)+(2x^2-1)=0\)
\(\Leftrightarrow 2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)
Bài 2:
a)
\(A=-4x^5-x^3+4x^2-5x+9+4x^5-6x^2-2\)
\(=(-4x^5+4x^5)-x^3+(4x^2-6x^2)-5x+(9-2)\)
\(=-x^3-2x^2-5x+7\)
\(B=-3x^4-2x^3+10x^2-8x+5x^3\)
\(=-3x^4+(5x^3-2x^3)+10x^2-8x\)
\(=-3x^4+3x^3+10x^2-8x\)
b)
\(P=A+B=(-x^3-2x^2-5x+7)+(-3x^4+3x^3+10x^2-8x)\)
\(=-3x^4+(3x^3-x^3)+(10x^2-2x^2)-(8x+5x)+7\)
\(=-3x^4+2x^3+8x^2-13x+7\)
\(P(-1)=-3.(-1)^4+2(-1)^3+8(-1)^2-12(-1)+7=23\)
\(Q=A-B=(-x^3-2x^2-5x+7)-(-3x^4+3x^3+10x^2-8x)\)
\(=3x^4-(x^3+3x^3)-(2x^2+10x^2)+(8x-5x)+7\)
\(=3x^4-4x^3-12x^2+3x+7\)
F(\(x\)) = - 2\(x\)3 + 7 - 6\(x\) + 5\(x^4\) - 2\(x^3\)
F(\(x\)) = (-2\(x^3\) - 2\(x^3\)) + 7 - 6\(x\) + 5\(x^4\)
F(\(x\)) = -4\(x^3\) + 7 - 6\(x\) + 5\(x^4\)
F(\(x\)) = 5\(x^4\) - 4\(x^3\) - 6\(x\) + 7
G(\(x\)) = 5\(x^2\) + 9\(x\) - 2\(x^4\) - \(x^2\) + 4\(x^3\) - 12
G(\(x\)) = (5\(x^2\) - \(x^2\)) + 9\(x\) - 2\(x^4\) + 4\(x^3\) - 12
G(\(x\)) = 4\(x^2\) + 9\(x\) - 2\(x^4\) + 4\(x^3\) - 12
G(\(x\)) = -2\(x^4\) + 4\(x^3\) +4\(x^2\) + 9\(x\) - 12
b, F(\(x\)) + G(\(x\)) = 5\(x^4\) - 4\(x^3\) - 6\(x\) + 7 + ( -2\(x^4\) + 4\(x^3\)+4\(x^2\)+9\(x\)-12)
F(\(x\)) + G(\(x\)) = 5\(x^4\)- 4\(x^3\) - 6\(x\)+ 7 - 2\(x^4\) + 4\(x^3\) + 4\(x^2\) + 9\(x\) - 12
F(\(x\)) + G(\(x\)) = (5\(x^{4^{ }}\) -2\(x^4\)) -(4\(x^3\) - 4\(x^3\)) + 4\(x^2\) + (9\(x\)-6\(x\)) - ( 12 - 7)
F(\(x\)) + G(\(x\)) = 3\(x^4\) + 4\(x^2\) + 3\(x\) - 5
a, f(x) = -2x\(^3\) + 7 - 6x + 5x\(^4\) - 2x\(^3\)
=5x\(^4\)+(-2x\(^3\)-2x\(^3\))-6x+7
=5x\(^4\)-4x\(^3\)-6x+7
g(x)= 5x\(^2\) + 9x - 2x\(^4\) - x\(^2\)+ 4x\(^3\) -12
=-2x\(^4\)+4x\(^3\)+(5x\(^2\)-x\(^2\))+9x-12
=-2x\(^4\)+4x\(^3\)+4x\(^2\)+9x-12
b,f(x)+g(x)=5x\(^4\)-4x\(^3\)-6x+7+-2x\(^4\)+4x\(^3\)+4x\(^2\)+9x-12
=(5x\(^4\)-2x\(^4\))+(-4x\(^3\)+4x\(^3\))+4x\(^2\)+(-6x+9x)+(7-12)
= 3x\(^4\)+4x\(^2\)+3x-5
f(x) = x2 - x + 5 - ( 4x2 + x3 - 4x + 3 )
= x2 - x + 5 - 4x2 - x3 + 4x - 3
= -x3 - 3x2 + 3x - 2
g(x) = -( 2x2 - 4x + 1 ) - ( -3x3 + 5x2 - 2 )
= -2x2 + 4x - 1 + 3x3 - 5x2 + 2
= 3x3 - 7x2 + 4x + 1
h(x) - g(x) = f(x)
h(x) = f(x) + g(x)
= -x3 - 3x2 + 3x - 2 + 3x3 - 7x2 + 4x + 1
= 2x3 - 10x2 + 7x - 1