\(\left(3x-1\right)^2-\left(x^2-4\right)-\left(8x^2+2x-3\right)\)
...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a) \(f\left(x\right)=2x\left(x^2-3\right)-4\left(1-2x\right)+x^2\left(x-1\right)+\left(5x+3\right)\)

\(=2x^3-6x-4+8x+x^3-x^2+5x+3\)

\(=x^3-x^2+7x-1\)

\(g\left(x\right)=-3\left(1-x^2\right)-2\left(x^2-2x+1\right)\)

\(=-3+3x^2-2x^2+4x-2\)

\(=x^2+4x-5\)

b) \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)

\(=x^3-x^2+7x-1-x^2-4x+5\)

\(=x^3-2x^2+3x-4\)

11 tháng 8 2018

Cảm ơn ạ

29 tháng 3 2020

Bài 3 :

1. Thay x = -5 vào f(x) ta được :

\(\left(-5\right)^2-4\left(-5\right)+5=50\)

Vậy x = -5 không là nghiệm của đa thức trên .

Bài 2 :

1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)

=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)

=> \(f_{\left(x\right)}=x^2+4\)

=> \(x^2+4=0\)

Vậy đa thức trên vô nghiệm .

2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)

=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)

=> \(g_{\left(x\right)}=0\)

Vậy đa thức trên vô số nghiệm .

3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)

=> \(h_{\left(x\right)}=x^2-x+1\)

=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)

Vậy đa thức vô nghiệm .

29 tháng 3 2020

Bài 3:

\(f\left(x\right)=x^2+4x-5.\)

+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)

\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)

\(\Rightarrow f\left(x\right)=25-20-5\)

\(\Rightarrow f\left(x\right)=5-5\)

\(\Rightarrow f\left(x\right)=0.\)

Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)

Chúc bạn học tốt!

5 tháng 6 2020

a) f(x) = -x + 2x2 + 3x5 + 9/2

g(x) = 3x - 2x2 - 3x5 + 3

b) f(x) + g(x) = ( -x + 2x2 + 3x5 + 9/2 ) + ( 3x - 2x2 - 3x5 + 3 )

                     = ( -x + 3x ) + ( 2x2 - 2x2 ) + ( 3x5 - 3x5 ) + ( 9/2 + 3 )

                     = 2x + 15/2

c) Đặt h(x) = 2x + 15/2

Để h(x) có nghiệm <=> 2x + 15/2 = 0

                              <=> 2x = -15/2

                              <=> x = -15/4

Vậy nghiệm của h(x) là -15/4

Quỳnh chưa sắp xếp nhé !, sai bảo cj, cj sửa.

a, Ta có :  \(f\left(x\right)=-x+2x^2-\frac{1}{2}+3x^5+5\)

\(=-x+2x^2+\frac{9}{2}+3x^5\)

Sắp xếp : \(f\left(x\right)=3x^5+2x^2-x+\frac{9}{2}\)

\(g\left(x\right)=3-x^5+\frac{1}{3}x^3+3x-2x^5-2x^2-\frac{1}{3}x^3\)

\(=3-3x^5+3x-2x^2\)

Sắp xếp : \(g\left(x\right)=-3x^5-2x^2+3x+3\)

b, \(f\left(x\right)+g\left(x\right)=\left(3x^5+2x^2-x+\frac{9}{2}\right)+\left(-3x^5-2x^2+3x+3\right)\)

\(=3x^5+2x^2-x+\frac{9}{2}-3x^5-2x^2+3x+3\)

\(=2x+\frac{15}{2}\)

c, \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)

Đặt f(x) + g(x) = 2x + 15/2  (đã có bên trên.)

Ta có : \(h\left(x\right)=2x+\frac{15}{2}=0\)

\(\Leftrightarrow2x+\frac{15}{2}=0\Leftrightarrow2x=-\frac{15}{2}\Leftrightarrow x=-\frac{15}{4}\)

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

6 tháng 4 2017

\(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1\\x-3\end{cases}}\)

=> x = 1 và x = 3 là nghiệm của đa thức f(x)

Mà nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)

=> nghiệm của đa thức g(x) là x = { 1; 3 }

Với x = 1 thì \(g\left(x\right)=1^3-a.1^2+b.1-3=0\)

\(\Rightarrow-a+b=2\)(1)

Với x = 3 thì \(g\left(x\right)=3^3-a.3^2+3b-3=0\)

\(\Rightarrow3a-b=8\)(2)

Cộng vế với vế của (1) và (2) ta được : ( - a + b ) + (3a - b) = 10

=> 2a = 10 => a = 5

=> - 5 + b = 2 => b = 7

Vậy a = 5 ; b = 7

6 tháng 4 2017

(x-1)(x-3)=0

=>x-1=0 hoặc x-3=0

=>x=1 hoặc x=3

Vậy nghiệm của f(x) là 1 và 3

Nghiệm của g(x) cũng là 1 và 3

Với x=1 ta có g(x)=1+a+b-3=0

=>a+b-2=0

a+b=2

Với x=3 ta có g(x)=27-9a+3b-3=0

=>24-9a+3b=0

=>8-3a+b=0

=>3a-b=8

a=\(\frac{8+b}{3}\)

Vậy với a+b=2 hoặc \(a=\frac{8+a}{3}\) thì nghiệm của đa thức f(x) cũng là nghiệm của g(x)

9 tháng 11 2016

a, \(x-2x^2+2x^2-x+4=4\)

b,\(x^2-5x-x^2-2x+7x=0\)

c,\(x^2-x+1\)

\(\Leftrightarrow x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

19 tháng 4 2018

a) b)c)PT vô nghiệm