Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=ax^2+bx+c\Rightarrow\hept{\begin{cases}f\left(0\right)=c\\f\left(1\right)=a+b+c\\f\left(2\right)=4a+2b+c\end{cases}}\)
\(f\left(0\right)\) nguyên \(\Rightarrow c\) nguyên \(\Rightarrow\hept{\begin{cases}2a+2b\\4a+2b\end{cases}}\) nguyên
\(\Rightarrow\left(4a+2b\right)-\left(2a+2b\right)=2a\)(nguyên)
\(\Rightarrow2b\) nguyên
\(\Rightarrowđpcm\)
\(a\ne0\)
\(f\left(1\right)=2\)
\(\Rightarrow a+b=2\)
\(f\left(3\right)=8\)
\(\Rightarrow3a+b=8\)
\(\Rightarrow2a+a+b=8\)
\(\Rightarrow2a=6\)
\(\Rightarrow a=3\)
\(\Leftrightarrow b=-1\)
Vậy đa thức đã cho là \(f\left(x\right)=3x-1\)
a≠0
ƒ (1)=2
⇒a+b=2
ƒ (3)=8
⇒3a+b=8
⇒2a+a+b=8
⇒2a=6
⇒a=3
⇔b=−1
Vậy đa thức đã cho là ƒ (x)=3x−1