Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
f(1)=a+b=1;f(2)=2a+b=4
\(\Rightarrow\)4-1=2a+b-a-b
\(\Rightarrow\)3=a
\(\Rightarrow\)1=3+b
\(\Rightarrow\)-2=b
Vậy a=3 và b=-2
f(1)=a+b=1
f(2)=2a+b=4
Từ đây bấm máy tính
mình chỉ bạn cách bấn này hi vọng lần sau bạn sẽ vận dụng dược vào bài khác:
mode+5+1.Bấm tiếp 1=1=1=2=1=4=
Sẽ ra đáp án x=3 ; y=-2
Nhớ k mình nha .......
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
a) Tính
\(f\left(x\right)-g\left(x\right)+h\left(x\right)=\left(x^3-2x^2+3x+1\right)-\left(x^3+x-1\right)+\left(2x^2+2\right)\)
\(=x^3-2x^2+3x+1-x^3-x+1+2x^2+2\)
\(=\left(x^3-x^3\right)+\left(-2x^2+2x^2\right)+\left(3x-x\right)+\left(1+1+2\right)\)
\(=2x+4\)
\(f\left(x\right)+g\left(x\right)+h\left(x\right)=\left(x^3-2x^2+3x+1\right)+\left(x^3+x-1\right)+\left(2x^2+2\right)\)
\(=x^3-2x^2+3x+1+x^3+x-1+2x^2+2\)
\(=\left(x^3+x^3\right)+\left(-2x^2+2x^2\right)+\left(3x+x\right)+\left(1-1+2\right)\)
\(=2x^3+4x+2\)
\(f\left(x\right)-g\left(x\right)-h\left(x\right)=\left(x^3-2x^2+3x+1\right)-\left(x^3+x-1\right)-\left(2x^2+2\right)\)
\(=x^3-2x^2+3x+1-x^3-x+1-2x^2-2\)
\(=\left(x^3-x^3\right)+\left(-2x^2-2x^2\right)+\left(3x-x\right)+\left(1+1-2\right)\)
\(=-4x^2+2x\)
b) Tìm x
\(f\left(x\right)-g\left(x\right)+h\left(x\right)=0\)
\(2x+4=0\)
\(2x=0-4=-4\)
\(x=\frac{-4}{2}=-2\)
\(f\left(x\right)-g\left(x\right)-h\left(x\right)=0\)
\(-4x^2+2x=0\)
\(-4x^2=-2x\)
\(x^2=\frac{-1}{2}x\)
\(\Leftrightarrow x^2+\frac{1}{2}x=0\)
\(x\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow x=0\)
Hoặc \(x+\frac{1}{2}=0\Leftrightarrow x=0-\frac{1}{2}=\frac{-1}{2}\)
a) h(x) = f(x) + g(x)
f(x) + g(x) = (x3 - 2x + 1) + (2x2 - x3 + x - 4)
= x3 - 2x + 1 + 2x2 - x3 + x - 4
= (x3 - x3) + 2x2 + (2x + x) + (1 - 4)
= 2x2 + 3x - 3
=> h(x) = 2x3 + 3x - 3
b) q(x) = f(x) - g(x)
f(x) - g(x) = (x3 - 2x + 1) - (2x2 - x3 + x - 4)
= x3 - 2x + 1 - 2x2 + x3 - x + 4
= (x3 + x3) + (-2x - x) + (1 + 4) - 2x2
= 2x3 - 3x + 5 - 2x2
=> q(x) = 2x3 - 3x + 5 - 2x2
c) x = -1
x3 - 2x + 1 + 2x2 - x3 + x - 4
= (-1)3 - 2.(-1) + 1 + 2.(-1)2 - (-1)3 + (-1) - 4
= (-1) - (-2) + 1 + 2 - (-1) + (-1) - 4
= 0
=> f(x) + g(x) tại x = -1 là 0
x = -2
x3 - 2x + 1 + 2x2 - x3 + x - 4
= (-2)3 - 2.(-3) + 1 + 2.(-2)2 - (-2)3 + (-2) - 4
= (-8) - (-6) + 1 + 4 - (-8) + (-2) - 4
= 5
=> f(x) + g(x) tại x = -2 là 5