K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2021

Hồng Phúc CTV, Nguyễn Việt Lâm

1 tháng 4 2019

NV
2 tháng 12 2021

Chọn 2 đỉnh liền kề của đa giác: có n cách chọn

Chọn 1 đỉnh còn lại ko kề với 2 đỉnh đã chọn :n-4 cách

\(\Rightarrow n\left(n-4\right)\) tam giác có đúng 1 cạnh là cạnh của đa giác

\(n\left(n-4\right)=165\Rightarrow n=15\)

NV
4 tháng 8 2021

a. Đa giác n đỉnh có \(C_n^2\) đoạn thẳng nối các đỉnh

Trong đó có n cạnh (là đường nối 2 đỉnh liền kế)

\(\Rightarrow\) Có \(C_n^2-n\) đường chéo

b. Cứ 3 đỉnh tạo thành 1 tam giác nên số tam giác là: \(C_n^3\)

c. Tam giác có 2 cạnh là 2 cạnh của tam giác khi 3 đỉnh của tam giác là 3 đỉnh liền kề

\(\Rightarrow\) có n tam giác thỏa mãn

d. Số tam giác chỉ có 1 cạnh là cạnh đa giác: có n cách chọn 2 điểm liền kề, ta có \(n-4\) cách chọn 1 điểm còn lại ko kề với 2 điểm trên

\(\Rightarrow n\left(n-4\right)\) tam giac thỏa mãn

e. Số tam giác thỏa mãn: \(C_n^3-\left(n+n\left(n-4\right)\right)\) 

11 tháng 3 2018

Đáp án A

Số tam giác tạo bởi các đỉnh của đa giác là  C 7 3 =35

Số tam giác có 2 cạnh là 2 cạnh của đa giác là 7 

Số tam giác có 1 cạnh là cạnh của đa giác là LAwTWNkOrIYs.png 

Vậy số tam giác tạo bởi đỉnh của đa giác và không có cạnh trùng với cạnh của đa giác là tWyAFnWcqr5l.png tam giác.

20 tháng 9 2017

23 tháng 4 2019

Đáp án D

Cứ nối 3 điểm bất kì của đa giác tạo thành 1 tam giác nên số tam giác là U2VmqhwB4Zfl.png.

11 tháng 4 2018