K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE và AD=AE

d: Xét ΔABC có

AD/AB=AE/AC

nên DE//BC

1 tháng 5 2019

A B C D E H

a, Xét \(\Delta ABH\) và\(\Delta ACH\) CÓ:

\(AHchung\)

AB = AC 

\(\widehat{AHB}=\widehat{AHC}\)

\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền cạnh góc vuông)

=> BH = HC ( 2 cạnh tương ứng )

b,Do BC = 8cm => BH = 4cm 

Áp dụng định lý Py ta go vào tam giác vuông ABH có :

\(AH^2+BH^2=AB^2\)

\(\Rightarrow AH^2=AB^2-BH^2\)\(\Rightarrow AH^2=5^2-4^2=25-16=9\)\(\Rightarrow AH=3\left(cm\right)\)

c,\(Xét\Delta DBH\) và\(\Delta ECH\) có :

\(\widehat{ABH}=\widehat{ACH}\)

BH = HC

\(\widehat{BDH}=\widehat{CEH}\)

\(\Rightarrow\Delta DBH=\Delta ECH\)\(\Rightarrow DH=EH\)=> \(\Delta DHE\) cân tại H

cho mình 1 tym nha

6 tháng 2 2022

a.ta có trong tam giác cân ABC đường cao cũng là đường trung tuyến => HB = HC

b.áp dụng định lý pitago ta có:

\(AB^2=AH^2+HB^2\)

\(5^2=AH^2+\left(8:2\right)^2\)

\(AH=\sqrt{5^2-4^2}=3cm\)

c.Xét tam giác vuông BHD và tam giác vuông CHE, có:

BH = CH ( cmt )

góc B = góc C ( ABC cân )

Vậy tam giác vuông BHD = tam giác vuông CHE 

=> HD = HE 

=> HDE cân tại H

d.ta có AB = AD + DB

           AC = AE + EC

Mà BD = CE ( 2 cạnh tương ứng của 2 tam giác bằng nhau )

=> AD = AE 

=> ADE cân tại A
Mà A là đường cao cũng là đường trung trực trong tam giác cân ABC cũng là đường trung trực của tam giác cân ADE ( cmx )

Chúc bạn học tốt !!!!

23 tháng 1 2022

a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).

=> AH là đường phân giác góc A (Tính chất tam giác cân).

b) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).

=> AH là đường trung tuyến (Tính chất tam giác cân).

=> H là trung điểm của BC.

=> BH = HC = \(\dfrac{1}{2}\) BC = \(\dfrac{1}{2}\).8 = 4 (cm).

Xét tam giác AHB vuông tại A:

Ta có: \(AB^2=AH^2+BH^2H^2\) (Định lý Pytago).

=> \(5^2=AH^2+4^2.\) => \(AH^2=5^2-4^2=9.\)

=> AH = 3 (cm).

c) Xét tam giác AHD vuông tại D và tam giác AHE vuông tại A:

AH chung.

Góc DAH = Góc EAH (AH là đường phân giác góc A).

=> Tam giác AHD = Tam giác AHE (ch - gn).

=> HD = HE (2 cạnh tương ứng). 

=> Tam giác DHE cân tại H.

10 tháng 3 2020

A B C H E D

a, xét tam giác AHB và tam giác AHC có : ^AHC = ^AHB = 90

AB = AC do tam giác ABC cân tại A (gt)

AH chung

=> tam giác AHC = tam giác AHB (ch-cgv)

=> HB = HC (đn)

b, xét tam giác HEC và tam giác HDB có : ^HEC = ^HDB = 90

HC = HB (câu a)

^ABC = ^ACB do tam giác ABC cân tại A (gt)

=> tam giác HEC = tam giác HDB (ch-gn)

=> HE = HD (đn)

=> tam giác HED cân tại H (đn)

c, tam giác ABC cân tại A (gt) =>  = ^ACB = (180 - ^BAC) : 2 (tc)

^BAC= 120 (gt)

=>  ^ACB = (180 - 120) : 2 = 30 

tam giác vuông EHC vuông tại E (gt) => ^EhC = 90 - ^ACB 

=> ^EHC = 60 

^EHC = ^DHB

=> ^EHC = ^DHB = 60

^EHC + ^DHB + ^DHE = 180

=> ^DHE = 60

mà tam giác DHE cân tại H (câu b)

=> tam giác DHE đều

d, tam giác CEH = tam giác BDH (câu b)

=> CE = BD (đn)

AB = AC (câu a)

CE + EA = AC

BD + DA = AB

=> AE = AD

=> tam giác ADE cân tại A => ^AED = (180 - ^BAC) : 2

tam giác ABC cân tại A (gt) => ^ACB = (180 - ^BAC) : 2

=> ^AED = ^ACB mà 2 góc này đồng vị

=> DE//BC (đl)

10 tháng 3 2020

hình em tự vẽ nhé

a) xét \(\Delta ABC\)cân tại A

=> \(AB=AC\)(t/c tam giác cân )

\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{A}}{2}\)(t/c tam giác cân )

xét \(\Delta ABH\)và \(\Delta ACH\)

\(AB=AC\left(cmt\right)\)

\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\) 

\(\widehat{AHB}=\widehat{AHC}\left(gt\right)\)

=>\(\Delta ABH\)=\(\Delta ACH\)(ch-gn)

=> HB=HC(2c tứ)

=> \(\widehat{BAH}=\widehat{CAH}\left(2gtu\right)\)

b) xét \(\Delta BHD\)và \(\Delta CHE\)

\(\widehat{BDH}=\widehat{CEH}\left(gt\right)\)

\(BH=HC\left(cmt\right)\)

\(\widehat{DBH}=\widehat{ECH}\left(cmt\right)\)

=>\(\Delta BHD\)=\(\Delta CHE\)(ch-gn)

=>HD=HE(2c tứ)

=> \(\Delta HDE\)cân tại H ( đ/n)

ta có \(\widehat{BAH}+\widehat{CAH}=\widehat{BAC}\)

lại có:\(\widehat{BAH}=\widehat{CAH}\left(2gtu\right)\)

mà \(\widehat{BAC}=120^o\)

=>\(\widehat{BAH}=\widehat{CAH}=60^o\)

xét \(\Delta ADH\)\(:\widehat{ADH}+\widehat{DAH}+\widehat{DHA}=180^o\)(đ/lý)

thay số :

rồi suy ra  ^DHA = 30 độ(1)

xét nốt \(\Delta AHE\)rồi suy ra ^AHE=30 độ(2) ( cách làm tương tự tam giác ADH)

từ (1) và (2) =>\(\Delta\) DHE - \(\Delta\)đều

d) HD : chứng minh \(\Delta ADE\)cân tại A

=> \(\widehat{ADE}=\widehat{AED}=\frac{180^o-\widehat{A}}{2}\)

mà \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{A}}{2}\)(cmt)

=> \(\widehat{ADE}=\widehat{ABC}\)

mà 2 góc này lại ở vị trí đồng vị của DE và BH

=> DE//BH

bye mik đi ngủ đây

17 tháng 3 2020

Xét tam giác ABH và tam giác ACH

                    AB=AC(GT)

                    ^AHB=^AHC=90o

                    ^ABH=^ACH ( TAM GIÁC ABC CÂN TẠI A)

=>  tam giác ABH = tam giác ACH

=> HB=HC ( 2c tứ)

có HB+HC=BC 

mà BC=8 cm

HB=HC

=> HB=HC=4cm

Xét tam giác ABH : ^H=90o

=> AB2+AH2+BH2(đ/lý pythagoras)

thay số ta có :

52=AH2+42

25-16=AH2

9=AH2

3=AH

c)Xét tam giác BDH và tam giác ECH

^BDH= ^ HEC =90o

BH=CH

^DBH=^ECH ( TAM GIÁC ABC CÂN TẠI A)

=> tam giác BDH = tam giác ECH

=> DH=EH

=> HDE CÂN TẠI H (Đ/N)

d) qua tia đối của DH ; kẻ HK sao cho HK= DH

CÓ : tam giác HCK có cạnh HK là cạnh lớn nhất ( cạnh huyền)  => HK > HC

mà HD=HK 

=> HD>HC

25 tháng 2 2020

A M N B C F H D E I

Thấy cái ý △AMN cân với cái chứng minh BAC = 1/2 MAN cũng ko lên quan lắm. Tham khảo qua ạ tại câu b hơi có vấn đề :(

a) Xét △AHB và △AHC có:

AHB = AHC (= 90o)

AH: chung

AB = AC (△ABC cân)

=> △AHB = △AHC (ch-cgv)

b) Xét △ADM và △ADH có:

ADM = ADH (= 90o)

DM = DH (gt)

AD: chung

=> △ADM = △ADH (2cgv)

=> AM = AH (2 cạnh tương ứng) (1)

Xét △ANE và △AHE có:

AEH = AEN (= 90o)

EH = EN (gt)

AE: chung

=> △ANE = △AHE (2cgv)

=> AN = AH (hai cạnh tương ứng) (2)

Từ (1) và (2) => AM = AN => △AMN cân tại A

Ta có: MAN = MAB + BAH + HAC + CAN

Mà MAB = HAB, HAC = CAN (suy ra được từ các tam giác bằng nhau)

=> MAN = 2BAH + 2 HAC

=> MAN = 2BAC

=> BAC = 1/2MAN

c) Ta có: HAD = HAE (△AHB = △AHC)

Mà HAD = DAM, HAE = EAN

=> HAD + DAM = HAE + EAN

=> HAM = HAN

Gọi giao điểm AH và MN là F

Xét △AFM và △AFN có:

AF: chung

FAM = FAN (cmt)

AM = AN (cmt)

=> △AFM = △AFN (c.g.c)

=> AFM = AFN (2 góc tương ứng)

Mà AFM + AFN = 180o => AFM = AFN = 90o

=> AH vuông góc MN (1)

Gọi giao điểm của DE và AH là I

Xét △ADH và △AEH có:

ADH = AEH (= 90o)

AH: chung

HAD = HAE (△HAB = △HAC)

=> △ADH = △AEH (ch-gn)

=> AD = AE (2 cạnh tương ứng)

Xét △AID và △AIE có:

AI: chung

IAD = IAE (cmt)

AD = AE (cmt)

=> △AID = △AIE (c.g.c)

=> AID = AIE (2 góc tương ứng)

Mà AID + AIE = 180o => AID = AIE = 90o

=> AH vuông góc DE (2)

Từ (1) và (2) => MN // DE

25 tháng 2 2020

d) \(\Delta\)ABC cân tại A  có AH là đường cao

=> AH là đường trung tuyến

=> H là trung điểm BC 

=> BH = HC = BC : 2 = 3 ( cm )

\(\Delta\)ABH vuông tại H  => AB2 - BH2 = AH2 => AH = 4 cm

=> S ( \(\Delta\)ABH ) = \(\frac{1}{2}\)BH . AH =\(\frac{1}{2}\) HD . AB 

=> 3.4 = HD . 5 => HD = 2,4 cm

\(\Delta\)BDH vuông tại D => BD2 = BH2 - HD = 3,24 => BD = 1,8 cm