K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>u1+3q-u1=6 và u1+10q=23

=>q=2 và u1=3

u12=u1+11*q=3+11*2=25

NV
26 tháng 2 2020

\(\left\{{}\begin{matrix}u_1+u_1+6d=8\\u_1+3d+u_1+4d=11\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2u_1+6d=8\\2u_1+7d=11\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}d=3\\u_1=-5\end{matrix}\right.\)

\(S=u_1+7d+u_1+9d+...+u_1+35d\)

\(S=15u_1+\left(7+9+...+35\right)d=15u_1+308d=849\)

23 tháng 2 2016

\(u_2=u_1.q,u_5=u_1.q^4,u_6=u_1.q^5\) nên

\(u_1(1+q^4)=51,u_1q(1+q^4)=102\)

chia 2 vế ta được q=2, suy ra u1=3

NV
26 tháng 2 2020

a/ \(S=5.15-2+5.16-2+...+5.40-2\)

\(=5\left(15+16+...+40\right)-2.26\)

\(=5.715-2.26=3523\)

b/ \(S=5\left(2+4+...+30\right)-2.29\)

\(=5.240-2.29=1142\)

23 tháng 2 2016

Gọi số hạng đầu tiên là a, công sai là d. 3 số hạng đầu là a,a+d.a+2d

a+(a+d)+(a+2d)=3a+3d=-6 nên d=-a-2

Suy ra 3 số hạng đầu là a, -2, -a-4

\(a^2+(-2)^2+(-a-4)^2=2a^2+8a+20=30\)

nên a=1,d=-3 hoặc a=-5,d=3

NV
16 tháng 2 2020

Cách đơn giản nhất: tính trực tiếp

\(u_2=\frac{1}{3}\left(u_1+1\right)=1\) ; \(u_3=\frac{1}{3}\left(u_2+1\right)=\frac{2}{3}\) ; \(u_4=\frac{1}{3}\left(u_3+1\right)=\frac{4}{9}\)

Còn nếu rảnh thì bạn có thể tìm công thức tổng quát của \(u_n\), nhưng chỉ nên áp dụng khi người ta bắt tính với \(n\) lớn kiểu \(u_{40}\) chẳng hạn

16 tháng 2 2020

U4=\(\frac{5}{9}\)chứ b

NV
2 tháng 3 2020

Theo t/c CSN \(u_1u_3=u_2^2\Rightarrow u_2^3=64\Rightarrow u_2=4\)

\(\Rightarrow\left\{{}\begin{matrix}u_1+u_3=10\\u_1u_3=16\end{matrix}\right.\)

Theo Viet đảo, \(u_1\)\(u_3\) là nghiệm: \(t^2-10t+16=0\Rightarrow\left[{}\begin{matrix}t=2\\t=8\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}u_1=2\Rightarrow q=2\\u_1=8\Rightarrow q=\frac{1}{2}\end{matrix}\right.\)

25 tháng 4 2019

em moi hoc lo 8

NV
25 tháng 4 2019

\(\left\{{}\begin{matrix}u_{14}=u_1+13d=18\\u_4=u_1+3d=-12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}d=3\\u_1=-21\end{matrix}\right.\)

Tổng 16 số hạng đầu tiên:

\(S_{16}=\frac{16\left(2u_1+15d\right)}{2}=24\)

NV
22 tháng 1 2019

Ý bạn là dãy số này: \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=u_n+\left(\dfrac{1}{2}\right)^n\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_1=1\\u_{n+1}+2.\left(\dfrac{1}{2}\right)^{n+1}=u_n+2.\left(\dfrac{1}{2}\right)^n\end{matrix}\right.\)

Đặt \(v_n=u_n+2.\left(\dfrac{1}{2}\right)^n\Rightarrow\left\{{}\begin{matrix}v_1=u_1+2\left(\dfrac{1}{2}\right)=2\\v_{n+1}=v_n\end{matrix}\right.\)

\(\Rightarrow v_{n+1}=v_n=v_{n-1}=...=v_1=1\)

\(\Rightarrow v_n=v_1=1\Rightarrow u_n+2\left(\dfrac{1}{2}\right)^n=1\)

\(\Rightarrow u_n=1-2\left(\dfrac{1}{2}\right)^n\)

\(\Rightarrow lim\left(u_n\right)=lim\left[1-2\left(\dfrac{1}{2}\right)^n\right]=1-0=1\)

26 tháng 2 2019

thanks bn nha