K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2020

Đặt \(A=x^2+y^2+z^2+xy+yz+zx\)

Áp dụng BĐT Bunyakovsky dạng phân thức, ta được: \(2A=x^2+y^2+z^2+\left(x+y+z\right)^2\ge\frac{\left(x+y+z\right)^2}{3}+\left(x+y+z\right)^2\)

\(=\frac{4\left(x+y+z\right)^2}{3}=12\Rightarrow A\ge6\)

Đẳng thức xảy ra khi x = y = z = 1

19 tháng 9 2019

Bài này có nhiều cách, xin phép làm 2 cách đơn giản. Tuy nhiên ở cách 2 tính sai chỗ nào thì tự check:) (chắc ko sai đâu:v đừng lo quá mức)

Cách 1: \(x^2+y^2\ge2xy\)

\(2x^2+2z^2\ge4xz\)

\(2y^2+2z^2\ge4yz\)

Cộng theo vế 3 bđt trên kết hợp giả thiết suy ra \(S\ge10\)

Cách 2:

Xét \(S-2\left[xy+2yz+2zx\right]\)

\(=\left(x-y\right)^2+2\left(y-z\right)^2+2\left(z-x\right)^2\ge0\)

Do đó...

14 tháng 11 2019

Tuy nhiên, sau đây mới là cách phân tích ngắn nhất chỉ với 2 bình phương không âm!

Ta có:\(S-2\left[xy+2\left(yz+zx\right)\right]\)\(=2\left(x-y\right)^2+\left(x+y-2z\right)^2\ge0\)

Vậy \(S\ge10\). It's verry beautiful!

7 tháng 11 2018

\(A=\left(x^2-yz\right)\left(y^2-zx\right)\left(z^2-xy\right)=\sqrt{\left(x^2-yz\right)\left(y^2-zx\right)}.\sqrt{\left(y^2-zx\right)\left(z^2-xy\right)}.\sqrt{\left(z^2-xy\right)\left(x^2-yz\right)}\)Giả sử \(x^2\ge yz;y^2\ge zx;z^2\ge xy\)

Theo Cosi ta có : 

\(\sqrt{\left(x^2-yz\right)\left(y^2-zx\right)}\le\frac{x^2-yz+y^2-zx}{2}\)

\(\sqrt{\left(y^2-zx\right)\left(z^2-xy\right)}\le\frac{y^2-zx+z^2-xy}{2}\)

\(\sqrt{\left(z^2-xy\right)\left(x^2-yz\right)}\le\frac{z^2-xy+x^2-yz}{2}\)

Cộng theo vế ta được : 

\(A\le\frac{x^2-yz+y^2-zx+y^2-zx+z^2-xy+z^2-xy+x^2-yz}{2}=\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)\)

\(=1-\left(xy+yz+zx\right)\le1-\left(x^2+y^2+z^2\right)=1-1=0\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{3}\) hoặc \(x=y=z=\frac{-1}{3}\) ( thỏa mãn giả sử ) 

Chúc bạn học tốt ~ 

PS : ko chắc :v 

12 tháng 2 2020

Em vừa giải bên AoPS:

NYub9d9.png

21 tháng 4 2016

x^2 + y^2 +z^2 =xy+yz+zx 

=> x^2 + y^2 +z^2-xy-yz-zx=0

2x^2 + 2y^2 + 2z^2 - 2xy-2yz-2zx=0

(x-y)^2 + (y-z)^2 + (z-x)^2=0

=> x=y=z (x;y;z >0)

=> 3.x^2014=3.y^2014=3.z^2014=3

x^2014=y^2014=z^2014=1

x=y=z=1 

tự tính P nha

30 tháng 6 2015

\(2P-2=2\left(xy+yz+zx\right)-2\left(x^2+y^2+z^2\right)+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)

\(=-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)

\(=\left(x-y\right)^2\left(z^2-1\right)+\left(y-z\right)^2\left(x^2-1\right)+\left(z-x\right)^2\left(y^2-1\right)\le0\)

\(\text{( Do }x^2;y^2;z^2\le1\text{)}\)

\(\Rightarrow2P\le2\Rightarrow P\le1\)

\(\text{Dấu bằng xảy ra khi và chỉ khi 1 trong 3 số bằng 1; 2 số còn lại bằng 0.}\)