Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có nhiều cách, xin phép làm 2 cách đơn giản. Tuy nhiên ở cách 2 tính sai chỗ nào thì tự check:) (chắc ko sai đâu:v đừng lo quá mức)
Cách 1: \(x^2+y^2\ge2xy\)
\(2x^2+2z^2\ge4xz\)
\(2y^2+2z^2\ge4yz\)
Cộng theo vế 3 bđt trên kết hợp giả thiết suy ra \(S\ge10\)
Cách 2:
Xét \(S-2\left[xy+2yz+2zx\right]\)
\(=\left(x-y\right)^2+2\left(y-z\right)^2+2\left(z-x\right)^2\ge0\)
Do đó...
\(A=\left(x^2-yz\right)\left(y^2-zx\right)\left(z^2-xy\right)=\sqrt{\left(x^2-yz\right)\left(y^2-zx\right)}.\sqrt{\left(y^2-zx\right)\left(z^2-xy\right)}.\sqrt{\left(z^2-xy\right)\left(x^2-yz\right)}\)Giả sử \(x^2\ge yz;y^2\ge zx;z^2\ge xy\)
Theo Cosi ta có :
\(\sqrt{\left(x^2-yz\right)\left(y^2-zx\right)}\le\frac{x^2-yz+y^2-zx}{2}\)
\(\sqrt{\left(y^2-zx\right)\left(z^2-xy\right)}\le\frac{y^2-zx+z^2-xy}{2}\)
\(\sqrt{\left(z^2-xy\right)\left(x^2-yz\right)}\le\frac{z^2-xy+x^2-yz}{2}\)
Cộng theo vế ta được :
\(A\le\frac{x^2-yz+y^2-zx+y^2-zx+z^2-xy+z^2-xy+x^2-yz}{2}=\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)\)
\(=1-\left(xy+yz+zx\right)\le1-\left(x^2+y^2+z^2\right)=1-1=0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{3}\) hoặc \(x=y=z=\frac{-1}{3}\) ( thỏa mãn giả sử )
Chúc bạn học tốt ~
PS : ko chắc :v
\(2P-2=2\left(xy+yz+zx\right)-2\left(x^2+y^2+z^2\right)+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)
\(=-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)
\(=\left(x-y\right)^2\left(z^2-1\right)+\left(y-z\right)^2\left(x^2-1\right)+\left(z-x\right)^2\left(y^2-1\right)\le0\)
\(\text{( Do }x^2;y^2;z^2\le1\text{)}\)
\(\Rightarrow2P\le2\Rightarrow P\le1\)
\(\text{Dấu bằng xảy ra khi và chỉ khi 1 trong 3 số bằng 1; 2 số còn lại bằng 0.}\)
Đặt \(A=x^2+y^2+z^2+xy+yz+zx\)
Áp dụng BĐT Bunyakovsky dạng phân thức, ta được: \(2A=x^2+y^2+z^2+\left(x+y+z\right)^2\ge\frac{\left(x+y+z\right)^2}{3}+\left(x+y+z\right)^2\)
\(=\frac{4\left(x+y+z\right)^2}{3}=12\Rightarrow A\ge6\)
Đẳng thức xảy ra khi x = y = z = 1