K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

với xyz=2009, thay vào, ta có 

\(A=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

     =\(\frac{xz}{1+zx+y}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}=1\)

=> ... k phụ thuộc vào x,y,z(ĐPCM)

^_^

1 tháng 1 2018

Cảm ơn cậu!! ^^

15 tháng 8 2017

Ta có : \(\left(x-y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2-2xy+2xz-2yz=0\)

Mà \(x^2+y^2+z^2\ge0\) nên \(-2xy+2xz-2yz\le0\)

\(\Leftrightarrow-2\left(xy+yz-xz\right)\le0\)

\(\Rightarrow xy+yz-xz\ge0\)(đpcm)

15 tháng 8 2017

Vì x-y+z=0   =>(x-y+z)2=0=>x2+y2+z2-2xy-2yz+2xz=0

=>x2+y2+z2=2xy+2yz-2xz mà x2+y2+z2\(\supseteq\)0

nên 2xy+2yz-2xz\(\supseteq\)0

=>xy+yz-xz\(\supseteq\)0

3 tháng 12 2018

\(M=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+xz}\)

\(M=\frac{xyz}{x\left(1+y+yz\right)}+\frac{1}{1+y+yz}+\frac{y}{y+yz+xyz}\)

\(M=\frac{yz}{1+y+yz}+\frac{1}{1+y+yz}+\frac{y}{y+yz+1}\)

\(M=\frac{yz+y+1}{1+y+yz}\)

Tham khảo nhé~

14 tháng 12 2018

\(\hept{\begin{cases}xyz=12\\x^3+y^3+z^3=36\end{cases}}\Leftrightarrow x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-3xyz+z^3=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow x=y=z\left(x+y+z>0\right)\)

Thay x=y=z vào r tính thôi bạn

C
17 tháng 9 2019

-Ta có:

xy + x + y = 3                 ( x + 1 )( y + 1 ) = 4

yz + y + z = 8      <=>     ( y + 1 )( z + 1 ) = 9        (1)

xz +x + z = 15                 ( z + 1)( x + 1 ) = 16

Nhân cả 3 vế với nhau, ta được:

\(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)^2\right]\) = 4.9.16

=> (x+1)(y+1)(z+1) \(\pm24\)

-TH1: Xét (x+1)(y+1)(z+1) = 24 (2)

Từ (1) và (2) suy ra:

=> z+1 = 6                             x = \(\frac{5}{3}\)

     x+1=\(\frac{8}{3}\)        <=>           y = \(\frac{1}{2}\)

     y+1 = \(\frac{3}{2}\)                      z = 5

Do đó P = x+y+z = \(\frac{5}{3}+\frac{1}{2}+5=\frac{43}{6}\)

-TH2: Xét (x+1)(y+1)(z+1) = -24 (3)

Từ (1)(3) suy ra:

=> z + 1 = -6                           z = -7

     x + 1 = \(\frac{-8}{3}\)      <=>     x = \(\frac{-11}{3}\)

     y + 1 = \(-\frac{3}{2}\)                y = \(\frac{-5}{2}\)

Do đó P = x+y+z =\(-7+\left(-\frac{11}{3}\right)+\left(-\frac{5}{2}\right)=-\frac{79}{6}\)