Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 5x2+5y2+8xy-2x+2y+2=0
=> (4x2+8xy+4y2)+(x2-2x+1)+(y2+2y+1)=0
=> (2x+2y)2+(x-1)2+(y+1)2=0
=> (2x+2y)2=(x-1)2=(y+1)2=0
=> x=1 và y=-1
=> M=(x+y)2015+(x-2)2016+(y+1)2017
=(1-1)2015+(1-2)2016+(-1+1)2017
= 0+(-1)2016+0
=1
tính M=(x+y)2015+(x-2)2016+(y+1)2017
Ta có
5x^2 + 5y^2 + 8xy - 2x + 2y + 2= 0
<=> 4x^2 + 8xy + 4y^2 + x^2 - 2x + 1 + y^2 + 2y + 1 = 0
<=> (4x^2 + 8xy + 4y^2) + (x^2 - 2x + 1) + (y^2 + 2y + 1) =0
<=> (2x + 2y)^2 + (x - 1)^2 + (y + 1)^2 =0
<=> 2x + 2y= 0 hoặc x - 1= 0 và y + 1= 0
<=> x=1 và y= - 1 thay x=1, y= - 1 vào biểu thức M ta có
M= (1 - 1)^2015 + (1 - 2)^2016 + ( - 1 + 1)^2017
= 0 + - 1^2016 + 0 = 1
5x2 + 5y2 + 8xy - 2x + 2y + 2 = 0
\(\Leftrightarrow\)(4x2 + 8xy + 4y2) + (x2 - 2x + 1) + (y2 + 2y + 1) = 0
\(\Leftrightarrow\)(2x + 2y)2 + (x - 1)2 + (y + 1)2 = 0
\(\Leftrightarrow\)\(\hept{\begin{cases}2x+2y=0\\x-1=0\\y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-y\\x=1\\y=-1\end{cases}}\)
M = (x + y)2015 + (x - 2)2016 + (y + 1)2017
= 0 + (1 - 2)2016 + 0 = 1
Ta có: 5x2 + 5y2 + 8xy - 2x + 2y = 0
\(\Leftrightarrow\)(4x2 + 4y2 + 8xy) + (x2 - 2x + 1) + (y2 + 2y + 1) = 0
\(\Leftrightarrow\)(2x + 2y)2 + (x - 1)2 + (y + 1) = 0
\(\Leftrightarrow\)\(\hept{\begin{cases}2x+2y=0\\x-1=0\\y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-1\end{cases}}\)
Thay vào pt ta đc:
M = (x + y)2015 + (x - 2)2016 + (y + 1)2017
= (1 - 1)2015 + (1 - 2)2016 + (-1 + 1)2017 = 1
Đẳng thức <=> (x^2-2x+1)+(y^2+2y+1)+(4x^2+8xy+4x^2) = 0
<=> (x-1)^2 + (y+1)^2 + (2x+2y)^2 = 0
=> x-1=0 ; y+1=0 và 2x+2y=0
=> x=1 và y=-1
Khi đó : M = 0 + (-1) + 0 = -1
k mk nha
\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(\Rightarrow M=0^{2015}+\left(-1\right)^{2016}+0^{2017}=1\)
\(5x^2+5y^2+8xy-2x+2y+2=0\Leftrightarrow x^2+4x^2+y^2+4y^2+8xy-2x+2y+1+1=0\Leftrightarrow\left(x^2-2x+1\right)+\left(4x^2+8xy+4y^2\right)+\left(y^2+2y+1\right)=0\Leftrightarrow\left(x-1\right)^2+4\left(x+y\right)^2+\left(y+1\right)^2=0\)
Mà \(\left\{{}4\begin{matrix}\left(x-1\right)^2\ge0\\\left(x+y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\4\left(x+y\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+y=0\\y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-y\\y=-1\end{matrix}\right.\)
Với \(x=1;y=-1\) ta có:
\(M=\left(x+y\right)^{2016}+\left(x-2\right)^{2017}+\left(y+1\right)^{2018}=\left(1-1\right)^{2016}+\left(1-2\right)^{2017}+\left(-1+1\right)^{2018}=0+\left(-1\right)+0=-1\)
Vậy M = -1
Ta có: 5x2 + 5y2 + 8xy - 2x + 2y + 2 = 0
\(\Leftrightarrow\)(4x2 + 8xy + 4y2) + (x2 - 2x + 1) + (y2 + 2y + 1) = 0
\(\Leftrightarrow\)(2x + 2y)2 + (x - 1)2 + (y + 1)2 = 0
\(\Leftrightarrow\)\(\hept{\begin{cases}2x+2y=0\\x-1=0\\y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}\)
Thay x = 1; y = -1; x + y = 0 vào M ta được:
M = 0 + (1 + 2)2008 + ( - 1 + 1)2009
= 0 + 32008 + 0 = 32008
3x2 + 3y2 +4xy+2x - 2y +2 = 0
<=> (2x2 + 4xy + 2y2) + (x2 + 2x + 1) + (y2 - 2y + 1) = 0
<=> 2(x + y)2 + (x + 1)2 + (y - 1)2 = 0
<=> x = - y = - 1
Thế vô ta được
(x+y)2010+ (x+2)2011+(y-1)2012
= (- 1 + 1)2010 + (- 1 + 2)2011 + (1 - 1)2012 = 1
dê ma k0 biet
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Ta thấy \(VT\ge0\forall x;y\) nên dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)Tha vào M ta được :
\(M=\left(1-1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)