K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LD
0
AH
Akai Haruma
Giáo viên
29 tháng 12 2017
Lời giải:
\(M=x^2y^2(x^2+y^2)=xy.xy(x^2+y^2)\)
\(\Leftrightarrow M=\frac{xy}{2}.2xy(x^2+y^2)\)
Áp dụng BĐT Cô-si ngược dấu:
\(2xy(x^2+y^2)\leq \left(\frac{2xy+x^2+y^2}{2}\right)^2=\left(\frac{(x+y)^2}{2}\right)^2=\frac{(x+y)^4}{4}=\frac{2^4}{4}=4\)
\(xy\leq \left(\frac{x+y}{2}\right)^2=\left(\frac{2}{2}\right)^2=1\)
Do đó: \(M=\frac{xy}{2}.2xy(x^2+y^2)\leq \frac{1}{2}.4=2\)
Vậy \(M_{\max}=2\Leftrightarrow x=y=1\)
IH
0