Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(3\left(\frac{ab+bc+ca}{a+b+c}\right)^2\le3\left[\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}\right]^2\)\(=3\left(\frac{a+b+c}{3}\right)^2=\frac{\left(a+b+c\right)^2}{3}\le a^2+b^2+c^2\)(1)
Mặt khác:\(\left(\frac{ab}{c}\right)^2+\left(\frac{bc}{a}\right)^2\ge2.\frac{ab}{c}.\frac{bc}{a}=2b^2\)(2)
Tương tự ta cũng có:\(\left(\frac{bc}{a}\right)^2+\left(\frac{ca}{b}\right)^2\ge2c^2\)(3);\(\left(\frac{ca}{b}\right)^2+\left(\frac{ab}{c}\right)^2\ge2a^2\)(4)
Cộng theo vế (1),(2),(3) ta được:\(2\left[\left(\frac{ab}{c}\right)^2+\left(\frac{bc}{a}\right)^2+\left(\frac{ca}{b}\right)^2\right]\ge2\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\left(\frac{ab}{c}\right)^2+\left(\frac{bc}{a}\right)^2+\left(\frac{ca}{b}\right)^2\ge a^2+b^2+c^2\)(5)
Từ (1) và (5) suy ra điều phải chứng minh.Dấu "=" xảy ra khi \(a=b=c\)
\(1.\)
\(a,\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)
\(\Rightarrow\left(a+b\right)^2=\left(a-b\right)^2+4ab\left(đpcm\right)\)
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn dương)
b) \(x^2-x+\frac{1}{2}=x^2-x+\frac{1}{4}+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2+\frac{1}{4}>0\)(luôn dương)
Ta có:\(\sqrt{abc}=a+b+c\ge3\sqrt[3]{abc}\)\(\Rightarrow\left(\sqrt{abc}\right)^6\ge\left(3\sqrt[3]{abc}\right)^6\Leftrightarrow\left(abc\right)^3\ge3^6\left(abc\right)^2\)
\(\Leftrightarrow abc\ge3^6\)(1).Lại có:\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\)
BĐT cần chứng minh tương đương với:\(3\sqrt[3]{\left(abc\right)^2}\ge9\sqrt{abc}\Leftrightarrow\sqrt[3]{\left(abc\right)^2}\ge3\sqrt{abc}\)
\(\Leftrightarrow\left(\sqrt[3]{\left(abc\right)^2}\right)^6\ge\left(3\sqrt{abc}\right)^6\)\(\Leftrightarrow\left(abc\right)^4\ge3^6\left(abc\right)^3\Leftrightarrow abc\ge3^6\).Điều này luôn đúng theo (1)
Suy ra:\(ab+bc+ca\ge9\sqrt{abc}=9\left(a+b+c\right)\).Hoàn tất chứng minh
Dấu "=" xảy ra khi \(a=b=c=9\)
Mình giúp bạn nha :33
Áp dụng BĐT Cô - si cho 2 số dương ta được :
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\) (1)
\(\frac{a}{b^2}+\frac{b}{a^2}\ge2\sqrt{\frac{a}{b^2}\cdot\frac{b}{a^2}}=2\sqrt{\frac{1}{ab}}\ge2\sqrt{\frac{1}{\frac{a^2+b^2}{2}}}=2.1=2\) (2)
( Do BĐT \(a^2+b^2\ge2ab\) \(\Rightarrow\frac{1}{ab}\ge\frac{1}{\frac{a^2+b^2}{2}}=1\) )
Nhân hai vế của BĐT (1) và (2) ta được BĐT cần chứng minh.
Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)
Ta có a^2 +b^2=2
Áp dụng BĐT Cosi
\(ab\le\frac{a^2+b^2}{2}=1\)
\(\frac{a}{b}+\frac{b}{a}\ge2\left(1\right)\)
\(\frac{a}{b^2}+\frac{b}{a^2}\ge2\sqrt{\frac{a}{b^2}\cdot\frac{b}{a^2}}=2\sqrt{\frac{1}{ab}}\ge2\left(2\right)\)
từ (1),(2) ta có ĐPCM
3/
a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)
\(A=x^2-2xy+y^2+x^2+2xy+y^2\)
\(A=2x^2+2y^2\)
b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)
\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)
\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)
\(B=8ab\)
c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)
\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)
\(C=x^2+2xy+y^2-x^2+2xy-y^2\)
\(C=4xy\)
d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)
\(D=4x^2-4x+1-8x^2+24x-18+4\)
\(D=-4x^2+20x-13\)
Ta có: \(abc=1\Leftrightarrow\hept{\begin{cases}ab=\frac{1}{c}\\bc=\frac{1}{a}\\ca=\frac{1}{b}\end{cases}}\)
\(abc=1\Leftrightarrow\sqrt[3]{abc}=1\)
Áp dụng BĐT AM-GM ta có:\(1=\sqrt[3]{abc}\le\frac{a+b+c}{3}\Leftrightarrow a+b+c\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge4\left(a+b+c-1\right)\)
\(\Leftrightarrow\)\(a^2b+ab^2+a^2c+ac^2+b^2c+cb^2+2abc+4\ge4\left(a+b+c\right)\)
\(\Leftrightarrow\frac{a}{c}+\frac{b}{c}+\frac{a}{b}+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}+6\ge4\left(a+b+c\right)\)
\(\Leftrightarrow\frac{a+b}{c}+\frac{a+c}{b}+\frac{b+c}{a}+6\ge4\left(a+b+c\right)\)
\(\Leftrightarrow\frac{a+b+c}{c}+\frac{a+c+b}{b}+\frac{a+b+c}{a}+3\ge4\left(a+b+c\right)\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+3\ge4\left(a+b+c\right)\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{3}{a+b+c}\ge4\)(1)
Ta chứng mĩnh BĐT phụ
Với a,b,c > thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Thật vậy.
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
Áp dụng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{3}{a+b+c}\ge\frac{9}{a+b+c}+\frac{3}{a+b+c}=\frac{12}{3}=4\)(2)
Từ (1) và (2)
=> \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge4\left(a+b+c-1\right)\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
Bạn ơi, tại sao \(\frac{9}{a+b+c}+\frac{3}{a+b+c}=\frac{12}{3}\) được hả bạn?