Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=xyz\) thì bài toán trở thành
Cho \(x+y+z=xyz\) chứng minh
\(P=xyz+\frac{x^2y^2z^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{9\sqrt{3}}{3}\)
Ta có:
\(t=x+y+z=xyz\le\frac{\left(x+y+z\right)^3}{27}=\frac{t^3}{27}\)
\(\Leftrightarrow t\ge3\sqrt{3}\)
Ta lại có:
\(P\ge\left(x+y+z\right)+\frac{\left(x+y+z\right)^2}{\frac{8\left(x+y+z\right)^3}{27}}=t+\frac{27}{8t}\)
\(=\left(t+\frac{27}{t}\right)-\frac{189}{8t}\ge6\sqrt{3}-\frac{189}{8.3\sqrt{3}}=\frac{27\sqrt{3}}{8}\)
PS: Đề sai rồi nha.
Áp dụng bđt Bunhiacopski ta có
\(\sqrt{c}.\sqrt{a-c}+\sqrt{c}.\sqrt{b-c}\le\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{b-c}\right)^2}+\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{a-c}\right)^2}.\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{c+b-c}.\sqrt{c+a-c}=\sqrt{ab}\left(đpcm\right)\)
Bu-nhi-a-cốp-ski: (ab+cd)2 \(\le\)( a2 + c2 )( b2 + d2 ) mà bạn.
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z
\(=\)\(18\left(\frac{1}{1}+\frac{1}{1}+\frac{1}{1}\right)\)\(=\)\(18\frac{3}{1}\)\(>\)\(\left(9+5\sqrt{3}\right)\left(a^2+b^2+c^2\right)\)\(=\)\(0\)
Vậy\(18\frac{3}{1}\)\(>\)\(0\)
Chứng minh là \(18\frac{3}{1}\)\(>\)\(0\)là đúng
chúc bạn học tốt
Bất đẳng thức trên
<=> + 1 + + 1 + + 1 ≥ 3
<=> + + ≥ 3 (*)
Ta có: VT(*) ≥
Ta sẽ chứng minh: (a + 1)(b + 1)(c + 1) ≥ (ab + 1)(bc + 1)(ca + 1)
<=> abc + ab + bc + ca + a + b + c + 1
≥ a2b2c2 + abc(a + b + c) + ab + bc + ca + 1
<=> 3 ≥ a2b2c2 + 2abc (**)
Theo Cosi: 3 = a + b + c ≥ 3 => ≤ 1 => abc ≤ 1
Vậy (**) đúng => (*) đúng.
Vì a ; b ; c dương , áp dụng BĐT Cô - si cho các cặp số dương , ta có :
\(\frac{c}{b}+\frac{a-c}{a}\ge2\sqrt{\frac{c\left(a-c\right)}{ab}}\)
\(\frac{c}{a}+\frac{b-c}{b}\ge2\sqrt{\frac{c\left(b-c\right)}{ab}}\)
\(\Rightarrow2\ge2\sqrt{\frac{c\left(a-c\right)}{ab}}+2\sqrt{\frac{c\left(b-c\right)}{ab}}\)
\(\Rightarrow1\ge\frac{\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}}{\sqrt{ab}}\)
\(\Rightarrow\sqrt{ab}\ge\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\)
Dấu " = " xảy ra \(\Leftrightarrow\frac{c}{b}=\frac{a-c}{a};\frac{c}{a}=\frac{b-c}{b}\)
\(\Leftrightarrow\frac{c}{b}+\frac{c}{a}=1\) \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\)
Vì \(a;b\ge c\Rightarrow a=b=2c\)
Vậy ...
BĐT cần chứng minh tương đương: \(\sqrt{\frac{c\left(a-c\right)}{ba}}+\sqrt{\frac{c\left(b-c\right)}{ab}}\le1\)
Áp dụng BĐT Cauchy:
\(VT\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)=\frac{1}{2}\left(\frac{a-c+c}{a}+\frac{c+b-c}{b}\right)=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=2c\)