Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2a)với a,b,c là các số thực ta có
\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)
tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)
tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)
cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)
dấu "=" xảy ra khi và chỉ khi a=b=c
có lẽ xài viete.
a+b+c=abc <=> b+c=abc-a=a.(2a2-1)=2a3-a
mà bc=2a2=> b,c là nghiệm của phương trình \(x^2-\left(2a^3-a\right)x+2a^2=0\)
để phương trình có nghiệm thì \(\Delta=\left(2a^3-a\right)^2-8a^2\ge0\Leftrightarrow a^2\left[\left(2a^2-1\right)^2-8\right]\ge0\)
\(\Leftrightarrow2a^2-1\ge2\sqrt{2}\Leftrightarrow a^2\ge\frac{1+2\sqrt{2}}{2}\Leftrightarrow a\ge\sqrt{\frac{1+2\sqrt{2}}{2}}\)(đpcm)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
1,
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)
1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)
\(=ac+bc+c^2+ab\)
\(=a\left(b+c\right)+c\left(b+c\right)\)
\(=\left(b+c\right)\left(a+b\right)\)
CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)
\(b+ca=\left(b+c\right)\left(a+b\right)\)
Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)
Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)
CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)
\(\Rightarrow P\le\frac{1}{2}.3\)
\(\Rightarrow P\le\frac{3}{2}\)
Dấu"="xảy ra \(\Leftrightarrow a=b=c\)
Vậy /...
\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)
\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)
Tương tự rồi cộng lại:
\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)
Dấu "=" xảy ra tại \(a=b=c=1\)
Áp dụng AM-GM: \(a\sqrt{b-1}+b\sqrt{a-1}\le a.\dfrac{b-1+1}{2}+b.\dfrac{a-1+1}{2}=ab\)
\(VT\ge\dfrac{6}{ab}+\sqrt{3ab+4}\)
( dự đoán dấu = xảy ra khi a=b=2)
Áp dụng cauchy-schwarz:
\(\dfrac{6}{ab}=\dfrac{18}{3ab}+\dfrac{2}{4}-\dfrac{1}{2}\ge\dfrac{\left(\sqrt{18}+\sqrt{2}\right)^2}{3ab+4}-\dfrac{1}{2}=\dfrac{32}{3ab+4}-\dfrac{1}{2}\)
Áp dụng AM-GM một lần nữa:
\(VT\ge\dfrac{32}{3ab+4}+\sqrt{3ab+4}-\dfrac{1}{2}=\dfrac{32}{3ab+4}+\dfrac{\sqrt{3ab+4}}{2}+\dfrac{\sqrt{3ab+4}}{2}-\dfrac{1}{2}\ge3\sqrt[3]{\dfrac{32}{4}}-\dfrac{1}{2}=\dfrac{11}{2}\)
Dấu = xảy ra khi a=b=2
P/s: Nothing
Áp dụng bất đẳng thức Cô - si, ta có:
\(a\sqrt{b-1}=a\sqrt{\left(b-1\right).1}\le a.\frac{b-1+1}{2}=\frac{ab}{2}\)(1)
\(b\sqrt{a-1}=b\sqrt{\left(a-1\right).1}\le b.\frac{a-1+1}{2}=\frac{ab}{2}\)(2)
Từ (1) và (2) suy ra \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
\(\Rightarrow\frac{6}{a\sqrt{b-1}+b\sqrt{a-1}}\ge\frac{6}{ab}\)(Đẳng thức xảy ra khi a = b = 2)
\(VT=\frac{6}{a\sqrt{b-1}+b\sqrt{a-1}}+\sqrt{3ab+4}\ge\frac{6}{ab}+\sqrt{3ab+4}\)
\(=\frac{18}{3ab}+\sqrt{3ab+4}\)
Đặt \(t=\sqrt{3ab+4}\Rightarrow3ab=t^2-4\). Khi đó\(VT\ge\frac{18}{t^2-4}+t=\frac{18}{\left(t+2\right)\left(t-2\right)}+\frac{3}{4}\left(t-2\right)\)
\(+\frac{1}{4}\left(t+2\right)+1\ge3\sqrt[3]{18.\frac{3}{4}.\frac{1}{4}}+1=\frac{11}{2}\)
Đẳng thức xảy ra khi t = 4 hay a = b = 2
Áp dụng BĐT AM-GM ta có:
\(\sqrt{b-1}=\sqrt{1\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a\sqrt{b-1}\le\frac{ab}{2}\)
Tương tự với \(b\sqrt{a-1}\)ta được
\(\frac{6}{a\sqrt{b-1}+b\sqrt{a-1}}+\sqrt{3ab+4}\ge\frac{6}{ab}+\sqrt{3ab+4}=\frac{18}{3ab}+\sqrt{3ab+4}\)
Vậy ta cần chứng minh
\(\frac{18}{3ab}+\sqrt{3ab+4}\ge\frac{11}{2}\)
Vì a,b đều lớn hơn 1 nên ta đặt \(t=\sqrt{3ab+4}>0\)khi đó bđt cần chứng minh trở thành
\(\frac{18}{t^2-4}+t\ge\frac{11}{2}\)
<=> \(\frac{\left(2t+5\right)\left(t-4\right)^2}{t^2-4}\ge0\)
Vậy t>=4
BĐT xảy ra khi a=b=1