\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 10 2020

Bạn chỉ cần để ý điều này thôi: \(\left(x-\frac{1}{x}\right)^2=x^2-2.x.\frac{1}{x}+\frac{1}{x^2}=x^2-2+\frac{1}{x^2}\)

Do đó giả thiết viết lại thành:

\(\left(a^2-2+\frac{1}{a^2}\right)+\left(b^2-2+\frac{1}{b^2}\right)+\left(c^2-2+\frac{1}{c^2}\right)=0\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(b-\frac{1}{b}\right)^2+\left(c-\frac{1}{c}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-\frac{1}{a}=0\\b-\frac{1}{b}=0\\c-\frac{1}{c}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{a}\\b=\frac{1}{b}\\c=\frac{1}{c}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2=1\\b^2=1\\c^2=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a^2\right)^{1010}=1^{1010}\\\left(b^2\right)^{1010}=1^{1010}\\\left(c^2\right)^{1010}=1^{1010}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^{2020}=1\\b^{2020}=1\\c^{2010}=1\end{matrix}\right.\) \(\Leftrightarrow a^{2020}+b^{2020}+c^{2020}=3\)

14 tháng 8 2019

b) \(4^2.3-4^5+27=3.4^n+27-4^5\)

\(4^2.3=3.4^n\)

=> n=2

14 tháng 8 2019

a) \(a^{n-1}-3a^3=a^4-3a^3\)

\(a^{n-1}=a^4\)

=> n-1=4

=> n=5

25 tháng 8 2020

Bài làm:

Ta có:

(a-b)2+(b-c)2+(c-a)2=(a+b-2c)2+(b+c-2a)2+(c+a-2b)2

<=> a2-2ab+b2+b2-2bc+c2+c2-2ca+a2=6a2+6b2+6c2-6(ab+bc+ca)

<=> \(4a^2+4b^2+4c^2-4ab-4bc-4ca=0\)

<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

<=> \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Rightarrow a=b=c\)

25 tháng 8 2020

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2\)

\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2-4ab-4bc-4ca=\left(a+b\right)^2\)

\(+\left(b+c\right)^2+\left(c+a\right)^2-4\left(b+c\right)a+4a^2-4\left(c+a\right)b+4b^2-4\left(a+b\right)c+4c^2\)

\(\Leftrightarrow-4ab-4bc-4ca=-4\left(b+c\right)a+4a^2-4\left(c+a\right)b+4b^2-4\left(a+b\right)c+4c^2\)

\(\Leftrightarrow ab-\left(a+b\right)c+c^2+bc-\left(b+c\right)a+a^2+ca-\left(c+a\right)b+b^2=0\)

\(\Leftrightarrow ab-ac-bc+c^2+bc-ba-ca+a^2+ca-cb-ab+b^2=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)

10 tháng 11 2019

\(\frac{\left(x^2+2\right)^2-4x^2}{y\left(x^2+2\right)-2xy-\left(x-1\right)^2-1}=\frac{x^2+2x+2}{y-1}\)

10 tháng 11 2019

chứng minh sao cho 2 phân thức đó bằng nhau

GIÚP VỚI !!!!!!!!!!

27 tháng 2 2017

Theo bất đẳng thức tam giác

\(\Rightarrow\left\{\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\Rightarrow\left\{\begin{matrix}b+c-a>0\\c+a-b>0\\a+b-c>0\end{matrix}\right.\)

Áp dụng bất đẳng thức \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\forall a,b>0\)

\(\Rightarrow\left\{\begin{matrix}\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{2}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{2}{c}\\\dfrac{1}{a+b-c}+\dfrac{1}{a+c-b}\ge\dfrac{2}{a}\end{matrix}\right.\)

Cộng theo từng vế

\(\Rightarrow2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( đpcm )

27 tháng 2 2017

câu 1: a+b>?

13 tháng 10 2019

a) x4 + 3x3 - 7x2 - 27x - 18

= x4 + x3 + 2x3 + 2x2 - 9x2 - 9x - 18x - 18

= x3 . (x + 1) + 2x2 . (x + 1) - 9x . (x + 1) - 18(x + 1)

= (x + 1)(x3 + 2x2 - 9x - 18)

= (x + 1)[x2 .(x + 2) - 9.(x + 2)]

= (x + 1)(x + 2)(x2 - 32)

= (x + 1)(x + 2)(x + 3)(x - 3)

b) x4 + 3x3 + 3x2 + 3x + 2

= x4 + x3 + 2x3 + 2x2 + x2 + x + 2x + 2

= x3 (x + 1) + 2x2 . (x + 1) + x(x + 1) + 2(x + 1)

= (x + 1)(x3 + 2x2 + x + 2)

= (x + 1)[x2 .(x + 2) + (x + 2)]

= (x + 1)(x + 2)(x2 + 1)

13 tháng 10 2019

\(x^4+3x^3-7x^2-27x-18\)

\(=\left(x^4+x^3\right)+\left(2x^3+2x^2\right)-\left(9x^2+9x\right)-\left(18x-18\right)\)

\(=x^3\left(x+1\right)+2x^2\left(x+1\right)-9x\left(x+1\right)-18\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+2x^2-9x-18\right)\)

\(=\left(x+1\right)\left[\left(x^3-3x^2\right)+\left(5x^2-15x\right)+\left(6x-18\right)\right]\)

\(=\left(x+1\right)\left[x^2\left(x-3\right)+5x^2\left(x-3\right)+6\left(x-3\right)\right]\)

\(=\left(x+1\right)\left(x-3\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left(x-3\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)^2\)

b) \(2x^2+4y^2+z^2-4xy-2x-2z+5=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-2x+1\right)+\left(z^2-2z+1\right)+3=0\)

....

a) \(x^2+5y^2-4xy+6y+9=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\y+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y=2.\left(-3\right)=-6\\y=-3\end{matrix}\right.\)

Vậy : \(\left(x,y\right)=\left(-6,-3\right)\)

29 tháng 10 2019

a, kết quả của phép chia là : x^2+3 dư (-19)

b,Để \(A⋮B\) thì \(\left(x+4\right)\inƯ\left(-19\right)\)

\(Ư\left(-19\right)\in\left\{-19;-1;1;19\right\}\)

suy ra \(\left(x+4\right)\in\left\{-19;-1;1;19\right\}\)

=>\(x\in\left\{-4-19;-4-1;-4+1;-4+19\right\}\)

=>\(x\in\left\{-23;-5;-3;15\right\}\)

Vậy \(x\in\left\{-23;-5;-3;15\right\}\)