Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(a+b=c^3-2018\Leftrightarrow a+b+c=\left(c-1\right).c\left(c+1\right)-2016c⋮6\)
Mặt khác :
\(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)=\left(a-1\right).a\left(a+1\right)+\left(b-1\right)b.\left(b+1\right)+\left(c-1\right).c\left(c+1\right)⋮6\)
Do vậy \(a^3+b^3+c^3⋮6\)
Vì a,b,c là các số nguyên và a2 + b2 + c2 chia hết cho 4
Nên \(\hept{\begin{cases}a^2⋮4\\b^2⋮4\\c^2⋮4\end{cases}}\Leftrightarrow\hept{\begin{cases}a⋮4\\b⋮4\\c⋮4\end{cases}}\)
Vì a,b,c đều đồng thơi chia hết cho 4
mặt khác , 4 chia hết cho 2
=> a , b , c đồng thời chia hết cho 2
\(a+b+c=c^3-19c=c^3-c-18c=c\left(c-1\right)\left(c+1\right)-18c\)
Có \(c\left(c-1\right)\left(c+1\right)\)là tích của ba số nguyên liên tiếp nên chia hết cho \(6\), \(18c\)chia hết cho \(6\)
suy ra \(a+b+c\)chia hết cho \(6\).
\(a^3+b^3+c^3-a-b-c=a^3-a+b^3-b+c^3-c\)
\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)
có \(a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)chia hết cho \(6\)do là tổng của \(3\)số hạng chia hết cho \(6\), \(a+b+c\)chia hết cho \(6\)
suy ra \(a^3+b^3+c^3\)chia hết cho \(6\).
\(S=a^{2015}+b^{2015}+c^{2015}-\left(a+b+c\right)=a\left(a^{2014}-1\right)+b\left(b^{2014}-1\right)+c\left(c^{2014}-1\right)\)
Ta có : \(a\left(a^{2014}-1\right)=a\left(a^{1007}-1\right)\left(a^{1007}+1\right)\) Bạn tự CM chia hết cho 6
=> S chia hết cho 6
=> dpcm