\(\frac{1}{x}+\frac{1}{y}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2020

Áp dụng bđt Cauchy schwarz:

=> 1/x+1/y+4/z+16/t >= [(1+1+2+4)^2] / x+y+z+t=8^2/(x+y+z+t)=64/1=64

=> đpcm.

29 tháng 1 2020

Áp dụng BĐT Svac - xơ:

\(\frac{1}{x}+\frac{1}{y}+\frac{4}{z}+\frac{16}{t}\ge\frac{\left(1+1+2+4\right)^2}{x+y+z+t}=\frac{64}{1}=64\)

(Dấu "="\(\Leftrightarrow x=y=\frac{1}{22};z=\frac{2}{11};t=\frac{8}{11}\))

27 tháng 2 2020

Bài này áp dụng BĐT này nhé , với x,y > 0 ta có :

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ( Cách chứng minh thì chuyển vế quy đồng nhé )

Áp dụng vào bài toán ta có :

\(\frac{1}{2x+y+z}=\frac{1}{4}\left(\frac{4}{\left(x+y\right)+\left(z+x\right)}\right)\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{z+x}\right)=\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{z+x}\right)\)

                                                           \(\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)

\(\Rightarrow\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)

Tương tự ta có :

\(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)

Do đó : \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}\left(x+y+z\right)=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{3}{4}\) (đpcm)

27 tháng 2 2020

Ta có: \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự: \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)

                  \(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)

Cộng vế theo vế có: \(VT\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=1\)

29 tháng 1 2020

BĐT phụ:\(\frac{m^2}{n}+\frac{p^2}{q}\ge\frac{\left(m+p\right)^2}{n+q}\) với n,p dương;m,p thực bất kỳ

Áp dụng:

\(RHS\ge\frac{\left(1+1+2+4\right)^2}{x+y+z+t}=\frac{64}{1}=64\)

27 tháng 1 2018

Áp dụng BĐ Svac-xơ, ta có 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\left(ĐPCM\right)\)

^_^

10 tháng 12 2016

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{x}{1+y+xz}=\frac{x\left(x^2+y+\frac{z}{x}\right)}{\left(1+y+xz\right)\left(x^2+y+\frac{z}{x}\right)}\le\frac{x^3+xy+z}{\left(x+y+z\right)^2}\)

\(\le\frac{x+y+z}{\left(x+y+z\right)}=\frac{1}{x+y+z}\)

Tương tự ta cũng có: \(\frac{y}{1+z+xy}\le\frac{1}{x+y+z};\frac{z}{1+x+yz}\le\frac{1}{x+y+z}\)

Cộng theo vế ta có: \(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{1+1+1}{x+y+z}=\frac{3}{x+y+z}\)

 

11 tháng 12 2016

ff

15 tháng 2 2020

2/ \(=\left(x^2-2xy+y^2+4x-4y+4\right)+\left(y^2+2y+1\right)+2016\)

\(=\left(x-y+2\right)^2+\left(y+1\right)^2+2016\ge2016\)

Vậy Min A =2016 khi\(\left\{{}\begin{matrix}x-y=-2\\y=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)

6 tháng 5 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{xz}+\frac{1}{yz}\ge\frac{\left(1+1\right)^2}{xz+yz}=\frac{4}{z\left(x+y\right)}\)(1)

Áp dụng bất đẳng thức AM-GM ta có :

\(z\left(x+y\right)\le\frac{\left(x+y+z\right)^2}{4}\le\frac{1^2}{4}=\frac{1}{4}\)=> \(\frac{4}{z\left(x+y\right)}\ge\frac{4}{\frac{1}{4}}=16\)(2)

Từ (1) và (2) => \(\frac{1}{xz}+\frac{1}{yz}\ge\frac{4}{z\left(x+y\right)}\ge16\)=> \(\frac{1}{xz}+\frac{1}{yz}\ge16\)( đpcm )

Dấu "=" xảy ra <=> x = y = 1/4 ; z = 1/2