K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2019

Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath

12 tháng 11 2018

\(x^3-5x^2+8x-4.\)

\(=x^3-4x^2-x^2+4x^2+4x^2-4\)

\(=\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)\)

\(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)

\(=\left(x^2-4x+4\right)\left(x-1\right)\)

\(=\left(x-2\right)^2\left(x-1\right)\)

12 tháng 11 2018

Cảm ơn bạn nhiều 

Bạn có thể giúp mình phần còn lại đc hem ? ^.^

4 tháng 8 2016

b) \(\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x+1\right)\left(x-1\right)\)

\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1+x^3-3x\left(x^2-1\right)\)

\(=3x^3+6x-3x^3+3x\)

\(=3x\)

4 tháng 8 2016

d) \(100^2-99^2+98^2-97^2+...+2^2-1\)

\(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+..+\left(2+1\right)\left(2-1\right)\)

\(=100+99+98+97+..+2+1\)

\(=\frac{\left(100+1\right)\cdot100}{2}=5050\)

 Câu trả lời hay nhất:  Theo hằng đẳng thức 
a^2+b^2=(a+b)^2-2ab; 
c^2+d^2=(c+d)^2-2cd. 
Suy ra a^2+b^2 và a+b cùng chẵn, hoặc cùng lẻ; 
c^2+d^2 cùng chẵn hoặc cùng lẻ. Kết hợp với 
a^2+b^2=c^2+d^2 ta suy ra a+b và c+d cùng chẵn, 
hoặc cùng lẻ. Từ đó a+b+c+d chẵn, và vì 
a+b+c+d>=4 nên a+b+c+d là hợp số.

23 tháng 3 2018

Ta có: A=3(a+c)(b+d)  <=> 2A/3 = 2(a+c)(b+d)

Theo Cauchy => 2A/3 \(\le\)(a+c)2+(b+d)2

Mặt khác, theo BĐT Bunhiacopxki có: 

\(\left(a+c\right)^2=\left(1.a+\frac{1}{\sqrt{2}}.\sqrt{2}c\right)^2\le\left(1+\frac{1}{2}\right)\left(a^2+2c^2\right)=\frac{3}{2}\left(a^2+2c^2\right)\)

Tương tự: \(\left(b+d\right)^2=\left(1.b+\frac{1}{\sqrt{2}}.\sqrt{2}d\right)^2\le\left(1+\frac{1}{2}\right)\left(b^2+2d^2\right)=\frac{3}{2}\left(b^2+2d^2\right)\)

=> \(\frac{2A}{3}\le\frac{3}{2}\left(a^2+b^2+2c^2+2d^2\right)=\frac{3}{2}.1=\frac{3}{2}\)

=> \(A\le\frac{9}{4}=>A_{max}=\frac{9}{4}\)