Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sắp xếp các đa thức theo lũy thừa giảm dần rồi xếp các số hạng đồng dạng theo cùng cột dọc ta được:
1: \(M\left(x\right)=A\left(x\right)-2B\left(x\right)+C\left(x\right)\)
\(=2x^5-4x^3+x^2-2x+2-2x^5+4x^4-2x^2+10x-6+C\left(x\right)\)
\(=4x^4-4x^3-x^2+8x-4+x^4+4x^3+3x^2-8x+\dfrac{67}{16}\)
\(=5x^4+2x^2+\dfrac{3}{16}\)
2: \(M\left(-0.5\right)=5\cdot\left(-\dfrac{1}{2}\right)^4+2\cdot\left(-\dfrac{1}{2}\right)^2+\dfrac{3}{16}=1\)
a) P(x) = 2x3 - 2x - x2 - x3 + 3x + 2
=> P(x) = (2x3 - x3) + (-2x + 3x) - x2 + 2
=> P(x) = x3 + x - x2 + 2
Sắp xếp : P(x) = x3 - x2 + x + 2
Q(x) = -4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 + 1
=> Q(x) = (-4x3 + 3x3) + (5x2 - 4x2) + (-3x + 4x) + 1
=> Q(x) = -x3 + x2 + x + 1
Sắp xếp : Q(x) = -x3 + x2 + x + 1
b) H(x) = P(x) + Q(x)
=> H(x) = (x3 + x - x2 + 2) + (-x3 + x2 + x + 1)
=> H(x) = x3 + x - x2 + 2 - x3 + x2 +x + 1
=> H(x) = (x3 - x3) + (x + x) + (-x2 + x2) + (2 + 1)
=> H(x) = 2x + 3
K(x) = P(x) - Q(x)
=> K(x) = (x3 + x - x2 + 2) - (-x3 + x2 + x + 1)
=> K(x) = x3 + x - x2 + 2 + x3 - x2 - x - 1
=> K(x) = (x3 + x3) + (x - x) + (-x2 - x2) + (2 - 1)
=> K(x) = 2x3 - 2x2 + 1
c) Q(2) = -23 + 22 + 2 + 1 = -8 + 4 + 2 + 1 = -1( m k bt (-2)3 hay -23 nx nên thông cảm))
P(-1) = (-1)3 - (-1)2 + (-1) + 2 = -1 - 1 - 1 + 2 = -1
d) Để H(x) có nghiệm => 2x + 3 = 0 => 2x = -3 => \(x=-\frac{3}{2}\)
Vậy x = -3/2 là nghiệm của đa thức H(x)
P/s : K chắc :))
a) Mình làm tắt
P(x) = x3 - x2 + x + 2
Q(x) = -x3 + x2 + x + 1
b) H(x) = P(x) + Q(x)
= x3 - x2 + x + 2 - x3 + x2 + x + 1
= 2x + 3
K(x) = P(x) - Q(x)
= x3 - x2 + x + 2 - ( -x3 + x2 + x + 1 )
= x3 - x2 + x + 2 + x3 - x2 - x - 1
= 2x3 - 2x2 + 1
c) Q(2) = -(2)3 + 22 + 2 + 1 = -8 + 4 + 2 + 1 = -1
P(-1) = 13 - 12 + 1 + 2 = 1 - 1 + 1 + 2 = 3
d) H(x) = 2x + 3
H(x) = 0 <=> 2x + 3 = 0
<=> 2x = -3
<=> = -3/2
Vậy nghiệm của H(x) = -3/2
Ta có h(x) = f(x) - g(x)
= -x5 + 2x4 - x2 - 1 - (-6 + 2x + 3x3 - x4 - 3x5)
= 2x5 + 3x4 - 3x3 - x2 - 2x + 5
q(x) = g(x) - f(x) = -[f(x) - g(x)]
- h(x) = -2x5 - 3x4 + 3x3 + x2 + 2x - 5 (1)
Ta có h(1) = 2.15 + 3.14 - 3.13 - 12 - 2.1 + 5 = 4
h(-1) = 2(-1)5 + 3.(-1)4 - 3(-1)3 - (-1)2 - 2(-1) + 5
= 10
h(-2) = 2(-2)5 + 3.(-2)4 - 3(-2)3 - (-2)2 - 2(-2) + 5
= 17
h(2) = 2.25 + 3.24 - 3.23 - 22 - 2.2 + 5 = 85
Vì h(x) = -g(x)
=> g(1) = - 4 ; g(-1) = 10 ; g(2) = -85 ; g(-2) = 17
b)
Từ (1) => h(x) = -g(x)
a. Ta có: Q(x)-H(x)=\(\left(2x^2-2x-1\right)-\left(x^2-2x\right)\)
= \(2x^2-2x-1-x^2+2x\)
= \(x^2-1\)
b. Ta có: H(x)=\(x^2-2x=0\)
=\(x.\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
a. Ta có: Q(x)-H(x)=(2x2−2x−1)−(x2−2x)(2x2−2x−1)−(x2−2x)
= 2x2−2x−1−x2+2x2x2−2x−1−x2+2x
= x2−1x2−1
b. Ta có: H(x)=x2−2x=0x2−2x=0
=x.(x−2)=0x.(x−2)=0
⇒[x=0x−2=0⇒[x=0x−2=0 ⇒[x=0x=2