K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2017

a) C = A + B

C = x2 – 2y + xy + 1 + x2 + y - x2y2 - 1

C = 2x2 – y + xy - x2y2

Vậy giá trị của biểu thức C= 2x2 – y + xy - x2y2

b) C + A = B => C = B - A

C = (x2 + y - x2y2 - 1) - (x2 – 2y + xy + 1)

C = x2 + y - x2y2 - 1 - x2 + 2y - xy - 1

C = - x2y2 - xy + 3y - 2.

Vậy giá trị của biểu thức C=- x2y2 - xy + 3y - 2.

29 tháng 3 2017

b) C + A = B

=> \(C + x^2 - 2y+xy+1 = x^2+y-x^2y^2-1\)

=> \(C=(x^2+y-x^2y^2-1)-(x^2-2y+xy+1)\)

=> \(C=x^2+y-x^2y^2-1-x^2+2y-xy-1\)

=> \(C=\left(x^2-x^2\right)+\left(y+2y\right)-x^2y^2-1-1-xy\)

=> \(C=3y-x^2y^2-2-xy\)

1 tháng 6 2018
https://i.imgur.com/gcZG4sm.jpg
2 tháng 6 2018

Đa thứcĐa thức

a: \(A=-3x^4-9x^2+9xy+y^2\)

\(B=4x^2+xy-2y^2\)

b: \(C=A+B=-3x^4-5x^2+10xy-y^2\)

c: \(C=-3\cdot\left(-1\right)^4-5\cdot\left(-1\right)^2+10\cdot\left(-1\right)\cdot\dfrac{-1}{2}-\dfrac{1}{4}\)

\(=-3-5+5-\dfrac{1}{4}=-\dfrac{13}{4}\)

31 tháng 5 2018
https://i.imgur.com/LxHFvu3.jpg
31 tháng 5 2018

Chữ bạn đẹp quá ta

5 tháng 6 2018

A + B - C

\(=\left(x^2-2x+3xy^2-x^2y^2\right)+\left(-2x^2+3y^2+5x+y+3\right)-\left(3x^2-2xy+7y^2-3x+1\right)\)

\(=x^2-2x+3xy^2-x^2y^2-2x^2+3y^2+5x+y+3-3x^2+2xy-7y^2+3x-1\)

\(=\left(x^2-2x^2-3x^2\right)+\left(-2x-5x+3x\right)++3xy^2-x^2y+x^2y^2+\left(3y^2-7y^2\right)+y+\left(3-1\right)\)

\(=-4x^2-4x+3xy^2-x^2y+x^2y^2-4y^2+y+2\)

Bậc của đa thức là 4

31 tháng 5 2018

@Lê Thị Điệu Đàn nè

25 tháng 2 2019

1) a)

=\(\left(4-1+8\right)x^2=11x^2\)

b) =\(\left(\dfrac{1}{2}-\dfrac{3}{4}+1\right)x^2y^2=\dfrac{3}{4}x^2y^2\)

c) =(3-7+4-6)y=5y 2) a) ...=\(\left[\left(\dfrac{-2}{3}y^3\right)-\dfrac{1}{2}y^3\right]+3y^2-y^2\\ =\left[\left(\dfrac{-2}{3}-\dfrac{1}{2}\right)y^3\right]+\left(3-1\right)y^2=\dfrac{-7}{6}y^3+2y^2\) b) ...=\(\left(5x^3-x^3\right)-\left(3x^2+4x^2\right)+\left(x-x\right)=4x^3-7x^2\) 3) a)A=\(\left(5.\dfrac{1}{2}\right).\left(x.x^2.x\right)\left(y^2.y^2\right)=\dfrac{5}{2}x^4y^4\) b)Vậy Đơn thức A có bậc 8; hệ số là \(\dfrac{5}{2}\); phần biến là \(x^4y^4\) c)Khi x=1;y=-1 thì A=\(\dfrac{5}{2}.1^4.\left(-1\right)^4=\dfrac{5}{2}\)

16 tháng 6 2020

\(M=\frac{-2}{7}x^4y\cdot\left(-\frac{21}{10}\right)xy^2z^2=\left(-\frac{2}{7}\cdot-\frac{21}{10}\right)\left(x^4x\right)\left(yy^2\right)z^2=\frac{3}{5}x^5y^3z^2\)

Hệ số 3/5

\(N=-16x^2y^2z^4\cdot\left(-\frac{1}{4}\right)xy^2z=\left(-16\cdot-\frac{1}{4}\right)\left(x^2x\right)\left(y^2y^2\right)\left(z^4z\right)=4x^3y^4z^5\)

Hệ số 4

Làm nốt b Quỳnh đag lm dở.

Ta có \(P\left(x\right)=C\left(x\right)+D\left(x\right)\)

\(P\left(x\right)=2x^4+2x-6x^2-x^3-3+4x^2+x^3-2x^2-2x^4-2x+5x^2+1\)

\(P\left(x\right)=x^2-2\)

Ta có : \(P\left(x\right)=x^2-2=0\)

\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

29 tháng 3 2017

a) \(x^2\) \(+2xy-3x^3\) \(+2y^3+3x^3-y^3\)

\(=x^2+2xy-\left(3x^3-3x^3\right)+\left(2y^3-y^3\right)\)

\(=x^2+2xy+y^3\)

Tại \(x=5;y=4\) thì:

\(5^2+2.5.4+4^3\)

\(=129\)

Vậy ....

b) Tại \(x=-1;y=-1\):

\(\left(-1\right).\left(-1\right)-\left(-1\right)^2.\left(-1\right)^2+\left(-1\right)^4.\left(-1\right)^4-\left(-1\right)^6.\left(-1\right)^6+\left(-1\right)^8.\left(-1\right)^8\)

\(=1\)

Vậy ....

29 tháng 3 2017

a, x2+2xy-3x3+2y3+3x3-y3

= x2+2xy+(-3x3+3x3)+(2y3-y3)

= x2+2xy+y3

Thay x=5 và y=4 vào đa thức x2+2xy+y3, ta có

52+2.5.4+43=129

Vậy giá trị của đa thức x2+2xy+y3 tại x=5 và y=4 là 129

b, xy- x2y2+x4y4-x6y6+x8y8

= xy-(xy)2+(xy)4-(xy)6+(xy)8

Ta có: xy=(-1)(-1)=1

Thay xy vào đa thức xy-(xy)2+(xy)4-(xy)6+(xy)8 ta có :

1-12+14-16+18=1-1+1-1+1=1

Vậy giá trị của biểu thức xy- x2y2+x4y4-x6y6+x8y8 tại x=-1 và y=-1 là 1

a: \(A=3x^2y^3-5x^2+3x^3y^2\)

\(B=x^2y^3+\dfrac{5}{2}x^5y-5x^2y\)

b: \(A+B=4x^2y^3+5x^2+\dfrac{5}{2}x^5y+3x^3y^2-5x^2y\)

\(A-B=2x^2y^3-5x^2+3x^3y^2-\dfrac{5}{2}x^5y+5x^2y\)

c: Khi x=-1 và y=-1/3 thì \(A=3\cdot\left(-1\right)^2\cdot\dfrac{-1}{27}-5\cdot\left(-1\right)^2+3\cdot\left(-1\right)^3\cdot\dfrac{1}{9}\)

\(=-\dfrac{1}{9}-5-\dfrac{1}{3}=\dfrac{-49}{9}\)