K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2021

a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)

\(f\left(x\right)-g\left(x\right)=8x\)

 \(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)

 \(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)

 \(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)

b) 8x=0

=> x=0

=> Nghiệm đa thức f(x)-g(x)

c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :

   \(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)

\(=6,75+9-9-2\)

\(=4,75\)

#H

12 tháng 4 2019

\(h\left(x\right)+f\left(x\right)-g\left(x\right)=-2x^2-x+9\)

\(h\left(x\right)+\left(-5x^4+x^2-2x+6\right)-\left(-5x^4+x^3+3x^2-3\right)=-2x^2-x+9\)

\(h\left(x\right)-5x^4+x^2-2x+6+5x^4-x^3-3x^2-3=-2x^2-x+9\)

\(h\left(x\right)-\left(5x^4-5x^4\right)+\left(x^2-3x^2\right)-x^3-2x+\left(6-3\right)=-2x^2-x+9\)

\(h\left(x\right)-0-2x^2-x^3-2x+3=-2x^2-x+9\)

\(h\left(x\right)-x^3-2x^2-2x+3=-2x^2-x+9\)

\(h\left(x\right)+\left(-x^3-2x^2-2x+3\right)=-2x^2-x+9\)

\(h\left(x\right)=\left(-2x^2-x+9\right)-\left(-x^3-2x^2-2x+3\right)\)

\(h\left(x\right)=-2x^2-x+9+x^3+2x^2+2x-3\)

\(h\left(x\right)=\left(-2x^2+2x^2\right)-\left(x-2x\right)+\left(9-3\right)+x^3\)

\(h\left(x\right)=0+x+6+x^3\)

\(h\left(x\right)=x^3+x+6\)

12 tháng 4 2019

d) Ta có : h(x) + f(x) - g(x) = -2x2 - x + 9

         <=> h(x)                   = -2x2 - x + 9 - f(x) + g(x)

         <=> h(x)                   = -2x2 - x + 9 - x2 + 2x + 5x4 - 6 + x3 - 5x4 + 3x2 - 3

         <=> h(x)                   = x3 + x.

Vậy h(x) = x3 + x

11 tháng 4 2019

Bài 1 :

\(M+N\)

\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)

\(=2xy^2-3x+12-xy^2-3\)

\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)

\(=xy^2-3x+9\)

11 tháng 4 2019

gải hộ mình bài 2

7 tháng 5 2016

ta rút gọn đa thức 

F(x)= 2x^3 + 3x^2 - 2x + 3

G(x)= 3x^2 - 7x + 2

H(x)= (2x^3 + 3x^2 - 2x + 3) - (3x^2 - 7x + 2)

     =  2x^3 + 3x^2 - 2x + 3 - 3x^2 + 7x - 2

     = 2x^3 + 5x + 1

P(x)=  (2x^3 + 3x^2 - 2x + 3) + (3x^2 - 7x + 2)

     = 2x^3 + 6x^2 - 9x + 5

4 tháng 5 2016

Bạn tự làm được, bài cực kì cơ bản. Mình hd thôi.

Bạn lấy 2 đa thức trừ cho nhau, nhớ để ngoặc để phá dấu không bị nhầm.

Câu b thì nghiệm của đa thức chính là tìm x sao cho H(x)=0

15 tháng 4 2019

a)f(x)+g(x)=10xmũ2-8x+ 14/3

b)f(x)-g(x)=10x mũ 2 +4x+16/3

nghiệm chưa tính ddcj nha

16 tháng 4 2019

a;\(f\left(x\right)+g\left(x\right)=\left(5x^2-2x+5\right)+\left(5x^2-6x-\frac{1}{3}\right)=25x^2-8x+\frac{1}{4}\)

b'\(f\left(x\right)-g\left(x\right)=\left(5x^2-2x+5\right)-\left(5x^2-6x-\frac{1}{3}\right)=4x+\frac{16}{3}\)

c;\(f\left(x\right)-g\left(x\right)=0\Leftrightarrow4x+\frac{16}{3}=0\)

                                         \(\Leftrightarrow4x=-\frac{16}{3}\)

                                           \(\Leftrightarrow x=-\frac{4}{3}\)

Vậy nghiệm của đa thức f(x)-g(x) là : x=-4/3

23 tháng 7 2021
Ta có:f(x)=x(x²-2x+7)-1=x³-2x²+7x-1;g(x)=x(x²-2x-1)-1=x³-2x²-1x-1.=>f(x)-g(x)=(x³-2x²+7x-1)-(x³-2x²-1x-1)= 8x;f(x)+g(x)=x³-2x²+7x-1+x³-2x²-1x-1=2x³-4x²+6x-2; b,Ta có:f(x)-g(x)= 8x=0=>x=0 là nghiệm của đa thức f(x)-g(x). c,f(x)+g(x)=2x³-4x²+6x-2=2×(-3/2)-4×(-3/2)+6×(-3/2)-2=(-6/2)+6-9-2=-8
7 tháng 8 2019

a) f(x) = x(x - 5) + 2(x - 5)

x(x - 5) + 2(x - 5) = 0

<=> (x - 5)(x - 2) = 0

        x - 5 = 0 hoặc x - 2 = 0

        x = 0 + 5         x = 0 + 2

        x = 5               x = 2

=> x = 5 hoặc x = 2

a,   f(x) có nghiệm 

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

->tự kết luận.

b1, để g(x) có nghiệm thì:

\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)

\(\Rightarrow2x^2-4x-x^2+5+4x=0\)

\(\Rightarrow x^2+5=0\)

Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)

suy ra: k tồn tại \(x^2+5=0\)

Vậy:.....

b2, 

\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)

\(=x^2-5x+2x-10\)

\(=x^2-3x-10\)

\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)

\(=x^2+5-x^2+3x-10=3x-5\)

31 tháng 5 2016

Câu 1:    a) x = 1 là nghiệm của đa thức f(x)

              b) x = -1 là nghiệm của đa thức g(x)

              c) x = 1 là nghiệm của đa thức h(x)

Câu 2: Số 1 là ngiệm của đa thức f(x)