Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=1+3+32+33+...+311
3C=3+32+33+...+311+312
3C-C=312-1
2C=312-1
C=(312-1)
Tổng C có: 11-0 + 1 = 12 số hạng
Viết : \(C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)=13+3^3\cdot13+3^6\cdot13+3^9\cdot13\)
\(C=13\cdot\left(1+3^3+3^6+3^9\right)\)chia hết cho 13
Mặt khác:
\(C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)=40+40\cdot3^4+40\cdot3^8\)
\(C=40\cdot\left(1+3^4+3^8\right)\)chia hết cho 40.
a) Ta có : \(C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^9.\left(1+3+3^2\right)\)
\(=13+3^3.13+...+3^9.13\)
\(=13.\left(1+3^3+...+3^9\right)⋮13\)
\(\Rightarrow C⋮13\left(\text{đpcm}\right)\)
b) Ta có : \(C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^4\right)+3^8.\left(1+3+3^2+3^3\right)\)
\(=40+3^4.40+3^8.40\)
\(=40.\left(1+3^4+3^8\right)⋮40\)
\(\Rightarrow C⋮40\left(\text{đpcm}\right)\)
C=1+3+32+33+...+311=(1+3+32+33)+...+(38+39+310+311)=40(1+...+6561)
Do có thừa số là 40 nên C chia hết cho 40
*Chú ý:Do 38+39+310+311 tính máy tính rồi chia cho 40 được nên tui mới viết 6561 còn nếu số lớn hơn nữa thì cứ viết 1+...+đề bài cho gì sau đó chia cho số mà phải chứng minh chia hết
VD: bla..bla+340+341+342+343(...+...)+....+(340+341+342+343)=m.[1+....+(340+341+342+343):40]
\(C=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+....+3^9\left(1+3+3^2\right)\)
\(C=13\left(1+3^3+..+3^9\right)\)
=>C chia hết cho 13
C=\(\left(1+3^2\right)+3\left(1+3^2\right)+.....\)
=>C có tận cùng là 0 chia hết cho 5
\(C=1+3+3^2+...+3^{11}\)
\(=\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(=13\cdot\left(1+...+3^9\right)⋮13\)