\(\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

a) Phân thức M xác định khi và chỉ khi :

+) \(2x-2\ne0\Leftrightarrow x\ne1\)

+) \(2x+2\ne0\Leftrightarrow x\ne-1\)

+) \(1-\frac{x-3}{x+1}\ne0\)

\(\Leftrightarrow x-3\ne x+1\)

\(\Leftrightarrow0x\ne4\left(\text{luôn đúng}\right)\)

Vậy \(x\ne\left\{1;-1\right\}\)

b) \(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)

\(M=\left(\frac{\left(x-2\right)\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}+\frac{3\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{x+1-x+3}{x+1}\right)\)

\(M=\left(\frac{2x^2-2x-4-2x^2-4x+6+6x+6}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{4}{x+1}\right)\)

\(M=\frac{8}{2\left(x-1\right)2\left(x+1\right)}\cdot\frac{x+1}{4}\)

\(M=\frac{8\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)\cdot4}\)

\(M=\frac{8\left(x+1\right)}{8\left(x+1\right)\left(x-1\right)}\)

\(M=\frac{1}{x-1}\)

9 tháng 12 2018

\(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)

\(=\left(\frac{x+1}{2x-2}-\frac{x+3}{2x+2}\right):\left(\frac{4}{x+1}\right)=\left[\frac{\left(x+1\right)\left(2x+2\right)-\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]:\left(\frac{4}{x+1}\right)\)

\(=\left[\frac{2x^2+4x+2-2x^2+2x+6-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)

\(=\left[\frac{6x+8-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)

\(=\frac{14}{4x^2-4}:\left(\frac{4}{x+1}\right)=\frac{14x+14}{16x^2-16}=\frac{7x+7}{8x^2-8}\)

13 tháng 12 2020

a, \(A=\left(\frac{1}{x-1}+\frac{x}{x^2-1}\right):\frac{2x+1}{x^2+2x+1}\)

\(=\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x+1}{\left(x+1\right)^2}\)

\(=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x+1}{\left(x+1\right)^2}\)

\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x+1\right)^2}{2x+1}=\frac{x+1}{x-1}\)

b, Thay x = -2 ta được : 

\(\frac{x+1}{x-1}=\frac{-2+1}{-2-1}=\frac{1}{3}\)

Vậy A nhận giá trị 1/3 

13 tháng 12 2020

\(A=\left(\frac{1}{x-1}+\frac{x}{x^2-1}\right)\div\frac{2x+1}{x^2+2x+1}\)

\(=\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right)\div\frac{2x+1}{\left(x+1\right)^2}\)

\(=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{\left(x+1\right)^2}{2x+1}\)

\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}\times\frac{\left(x+1\right)^2}{2x+1}\)

\(=\frac{x+1}{x-1}\)

Với x = -2 (tmđk) => \(A=\frac{-2+1}{-2-1}=\frac{-1}{-3}=\frac{1}{3}\)

18 tháng 11 2018

Câu 1 ;

a) \(x^2-2x-15\)

\(x^2-5x+3x-15\)

\(x(x-5)+3(x-5)\)

\((x+3).(x-5)\)

b) \(xy+\frac{1}{3}y-\frac{1}{4}x-\frac{1}{12}\)

\((x+\frac{1}{3})y-\frac{1}{4}(x+\frac{1}{3})\)

\((x-\frac{1}{4}).(x+\frac{1}{3})\)

Câu 2 : 

\(A=\left(x+1\right)\left(x^2-x+1\right)+x-\left(x-1\right)\left(x^2+x+1\right)+1994\)

=> \(A=x^3+1+x-x^3+1+1994\)

=> \(A=1+x+1+1994\)

=> \(A=x+1996=-1995+1996=1\)

26 tháng 1 2017

\(A=\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)

\(A=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(1+x+x^2\right)}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)

\(A=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(x+1\right)}\right):\frac{2x+1}{x^2+2x+1}\)

\(A=\left(\frac{-x-1}{\left(1-x\right)\left(x+1\right)}-\frac{x}{\left(1-x\right)\left(x+1\right)}\right):\frac{2x+1}{x^2+2x+1}\)

\(A=\frac{-2x-1}{\left(1-x\right)\left(x+1\right)}:\frac{2x+1}{x^2+2x+1}\)

\(A=\frac{-\left(2x+1\right)}{\left(1-x\right)\left(x+1\right)}.\frac{\left(x+1\right)^2}{2x+1}\)

\(A=\frac{-1}{1-x}.\frac{x+1}{1}\)

\(A=\frac{-x-1}{1-x}\)

1 tháng 3 2020

a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.

Thay x=-2 và B ta có :

\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)

b) Rút gọn : 

\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)

\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)

Xấu nhỉ ??