Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{2\cdot4}{3^2}\cdot\frac{3.5}{4^2}\cdot\frac{4\cdot6}{5^2}\cdot......\cdot\frac{49\cdot51}{50^2}\)
=\(\frac{\left[2\cdot3\cdot4\cdot......\cdot49\right]\cdot\left[4\cdot5\cdot6\cdot.....\cdot51\right]}{\left[3\cdot4\cdot5\cdot....\cdot50\right]\cdot\left[3\cdot4\cdot5\cdot....\cdot50\right]}\)
=\(\frac{2\cdot51}{50\cdot3}\)
=\(\frac{17}{25}\)
Vì \(\frac{17}{25}\) ko phải là số nguyên nên B ko phải là số nguyên [ĐPCM]
Bạn tham khảo nhé
Ta có :
\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\)
\(B=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+\frac{5^2-1}{5^2}+...+\frac{50^2-1}{50^2}\)
\(B=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+\left(1-\frac{1}{5^2}\right)+...+\left(1-\frac{1}{50^2}\right)\)
\(B=\left(1+1+1+1+...+1\right)-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-\frac{1}{5^2}-...-\frac{1}{50^2}\)
\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\right)\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(A< 1-\frac{1}{50}\)
\(A< \frac{49}{50}\)\(\left(1\right)\)
Lại có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{50.51}\)
\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{50}-\frac{1}{51}\)
\(A>\frac{1}{2}-\frac{1}{51}=\frac{49}{102}\)\(\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{49}{102}< A< \frac{49}{50}\)
\(\Leftrightarrow\)\(49-\frac{49}{102}< 49-A< 49-\frac{49}{50}\)
\(\Leftrightarrow\)\(\frac{4949}{102}< B< \frac{2401}{50}\)
\(\Rightarrow\)\(B\notinℤ\)
Vậy B không là số nguyên
\(B=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{50^2-1}{50^2}\)
\(B=1-\frac{1}{2^2}+1-\frac{1}{3^2}+...+1-\frac{1}{50^2}\)
\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)=49-A< 49\)
Mặt khác ta có:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 1-\frac{1}{50}< 1\)
\(\Rightarrow B=49-A>49-1=48\)
\(\Rightarrow48< B< 49\)
\(\Rightarrow\) B nằm giữa 2 số nguyên liên tiếp nên B không phải là số nguyên
\(B=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+\frac{1}{2500}\)
\(B=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+\frac{1}{50^2}=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)\)(từ 2 đến 50 có 49 số nên có 49 số 1)
\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)<49\) (1)
Nhận xét: \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};...;\frac{1}{50^2}<\frac{1}{49.50}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}<1\) => \(-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)>-1\)
=> \(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)>49-1=48\)(2)
Từ (1)(2) => 48 < B < 49 => B không phải là số nguyêm
Bạn tham khảo đường link này nhé ( câu hỏi tương tự ): https://olm.vn/hoi-dap/detail/7014339603.html
Đặt A =\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)
\(=99-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\right)\)
Đặt B = \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)
>\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{2}-\frac{1}{101}=\frac{99}{202}\)
Khi đó A = \(99-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\right)< 99-\frac{99}{202}\approx98,5\)
=> A < 98,5 (1)
Lại có B = \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
Khi đó A =\(99-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\right)>99-\frac{99}{100}=98,01\)
=> A > 98,01 (2)
Từ (1)(2) => 98,01 < A < 98,5
=> A không là số nguyên
1b) Ta có: \(\frac{x}{3}\) = \(\frac{y}{4}\) => \(\frac{x}{15}\) = \(\frac{y}{20}\)
\(\frac{y}{5}\) = \(\frac{z}{6}\) => \(\frac{y}{20}\) = \(\frac{z}{24}\)
=> \(\frac{x}{15}\) = \(\frac{y}{20}\) = \(\frac{z}{24}\)
Đặt \(\frac{x}{15}\) = \(\frac{y}{20}\) = \(\frac{z}{24}\) = k
=> x = 15k; y = 20k và z = 24k
Thay vào A ta có:
A = \(\frac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}\)
=> A = \(\frac{30k+60k+96k}{45k+80k+120k}\)
=> A = \(\frac{\left(30+60+96\right)k}{\left(45+80+120\right)k}\)
=> A = \(\frac{186k}{245k}\)
=> A = \(\frac{186}{245}\)
Vậy A = \(\frac{186}{245}\).