K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2017

ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) 

\(\frac{1}{2a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\Rightarrow P\le\frac{1}{16}\left[\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2+\left(\frac{1}{b+c}+\frac{1}{a+c}^2\right)\right]\)

\(\Rightarrow16P\le\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(a+c^2\right)}+\frac{2}{\left(a+b\right)\left(b+c\right)}+\frac{2}{\left(a+b\right)\left(a+c\right)}\)\(+\frac{2}{\left(b+c\right)\left(c+a\right)}\)

ap dung \(x^2+y^2+z^2\ge xy+yz+xz\) voi a+b=x, b+c=y, c+a=z

\(16P\le\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\)

tiếp tục áp dụng bdt ban đầu \(\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}\)

\(\Rightarrow\frac{1}{\left(a+b\right)^2}\le4.16.\left(\frac{1}{a}+\frac{1}{b}\right)^2\)

\(\Rightarrow16P\le\frac{1}{4}.16\left[\left(\frac{1}{a}+\frac{1}{b}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2+\left(\frac{1}{c}+\frac{1}{a}\right)^2\right]\)

=\(\frac{1}{4}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\right)\)

tiep tuc ap dung bo de thu 2 ta co 

\(16P\le\frac{1}{4}.4\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\)

\(\Rightarrow p\le\frac{3}{16}\)dau =khi a=b=c=1

3 tháng 8 2020

Nguồn : mạng :V vào thống kê coi hìnholm.pn

25 tháng 3 2018

thi hsg co cao khong

25 tháng 3 2018

dang no giong bai bdt vap LHP chuyen nam 2017-2018

26 tháng 4 2017

\(\frac{1}{a}-1=\frac{a+b+c+d}{a}-1=\frac{b+c+d}{a}\ge\frac{3\sqrt[3]{bcd}}{a}\)

tương tự với 3 cái còn lại rồi nhân vô

26 tháng 4 2017

Tình yêu sao khác thường 
Đôi lúc ta thật kiên cường 
Nhiều người trách mình điên cuồng 
Cứ lao theo dù không lối ra 

23 tháng 12 2016

Áp dụng BĐT AM-GM ta có:

\(6=2\left(\frac{a}{b}+\frac{b}{a}\right)+c\left(\frac{a}{b^2}+\frac{b}{a^2}\right)\)

\(\ge4+\frac{c\left(a^3+b^3\right)}{a^2b^2}\ge4+\frac{c\left(a+b\right)}{ab}\)\(\Rightarrow\frac{c\left(a+b\right)}{ab}\in\text{(}0;2\text{]}\)

Áp dụng BĐT Cauchy-Schwarz lại có:

\(P\ge\frac{\left(bc+ca\right)^2}{2abc\left(a+b+c\right)}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)\(\ge\frac{3c^2\left(a+b\right)^2}{2\left(ab+bc+ca\right)}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)

\(=\frac{\frac{3c^2\left(a+b\right)^2}{a^2b^2}}{2\left(1+\frac{ca}{ab}+\frac{bc}{ab}\right)^2}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)

\(=\frac{\frac{3c^2\left(a+b\right)^2}{a^2b^2}}{2\left[1+\frac{c\left(a+b\right)}{ab}\right]^2}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)

Đặt \(x=\frac{c\left(a+b\right)}{ab}\left(x\in\text{(}0;2\text{]}\right)\) khi đó ta có:

\(P\ge\frac{3x^2}{2\left(1+x\right)^2}+\frac{4}{x}\) cần chứng minh \(P\ge\frac{8}{3}\Leftrightarrow\left(x-2\right)\left(7x^2+22x+12\right)\le0\forall x\in\text{(0;2]}\)

Vậy \(Min_P=\frac{8}{3}\) khi a=b=c=2

23 tháng 12 2016

Chỗ dùng cauchy- schwarz mình không hiểu lắm

NV
20 tháng 6 2020

\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\right)=20\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2019\)

\(\Leftrightarrow7\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=20\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2019\)

\(\Rightarrow7\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le\frac{20}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+2019\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le6057\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\sqrt{673}\)

Ta có:

\(\sqrt{\left(2+1\right)\left(2a^2+b^2\right)}\ge\sqrt{\left(2a+b\right)^2}=2a+b\)

\(\Rightarrow\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)\)

Tương tự: \(\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}\le\frac{1}{9}\left(\frac{2}{b}+\frac{1}{c}\right)\) ; \(\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\le\frac{1}{9}\left(\frac{2}{c}+\frac{1}{a}\right)\)

Cộng vế với vế:

\(P\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\sqrt{673}\)

\(P_{max}=\sqrt{673}\) khi \(a=b=c=\frac{1}{\sqrt{673}}\)

20 tháng 5 2020

Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x,y,z\right)\)

thi \(P= \Sigma \frac{z^2}{x+y} \geq \frac{x+y+z}{2} \) (1)

Mat khac co \(x+y+z=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\) (2)

Tu (1) va (2) suy ra \(P\ge\frac{3}{2}\).Dau = xay ra khi \(a=b=c=1\)

20 tháng 11 2019

Câu hỏi của Phạm Trần Minh Trí - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo.