Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(M=\left(\frac{4}{x-4}-\frac{4}{x+4}\right).\frac{x^2+8x+16}{32}\)
\(M=\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\right).\frac{\left(x+4\right)^2}{32}\)
\(M=\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}.\frac{\left(x+4\right)^2}{32}\)
\(M=\frac{32\left(x+4\right)^2}{32\left(x+4\right)\left(x-4\right)}=\frac{x+4}{x-4}\)
b,
Để M = \(\frac{1}{3}\)
\(\Rightarrow x-4=3x+12\)
\(\Rightarrow2x=16\Leftrightarrow x=8\)
\(c,\)\(\frac{x+4}{x-4}=\frac{x-4+8}{x-4}\)
\(\Rightarrow x-4\inƯ\left(8\right)=\left(1;-1;2;-2;4;-4;8;-8\right)\)
\(\Rightarrow x-4\in\left(5;3;6;2;8;0;12;-4\right)\)
Vậy để M thuộc Z thì x phải thỏa mãn các điều kiện trên .
\(M=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
a) ĐKXĐ : x ≠ -3 , x ≠ 2
\(=\frac{x+2}{x+3}-\frac{5}{x^2-2x+3x-6}-\frac{1}{x-2}\)
\(=\frac{x+2}{x+3}-\frac{5}{x\left(x-2\right)+3\left(x-2\right)}-\frac{1}{x-2}\)
\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+3x-12}{\left(x+3\right)\left(x-2\right)}=\frac{x\left(x-4\right)+3\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)
b) Để M = 1/3
=> \(\frac{x-4}{x-2}=\frac{1}{3}\)( x ≠ -3 , x ≠ 2 )
=> 3( x - 4 ) = x - 2
=> 3x - 12 - x + 2 = 0
=> 2x - 10 = 0
=> 2x = 10
=> x = 5 ( tm )
Vậy x = 5 thì M = 1/3
đk: \(x\ne2,x\ne-3\)
a) Ta có: \(M=\frac{-4+x^2}{x^2+x-6}-\frac{5}{x^2+x-6}-\frac{x+3}{x^2+x-6}\)
\(=\frac{x^2-x-12}{x^2+x-6}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)
b) \(M=\frac{1}{3}\Rightarrow\frac{x-4}{x-2}=\frac{1}{3}\Leftrightarrow3x-12=x-2\Leftrightarrow x=5\)
a) thay x = -3 vào biểu thức, ta có:
\(A=\frac{\left(-3\right)^2+2.\left(-3\right)}{\left(-3\right)+1}=-\frac{3}{2}\)
b) M = A.B
\(M=\left(-\frac{3}{2}\right)\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{4-x^2}\right)\)
\(M=-\frac{3\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{4-x^2}\right)}{2}\)
\(M=-\frac{3.\frac{8}{x+2}}{2}\)
\(M=-\frac{\frac{24}{x+2}}{2}\)
\(M=-\frac{24}{2\left(x+2\right)}\)
\(M=-\frac{12}{x+2}\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm5\end{cases}}\)
\(M=\left(\frac{x}{x+5}-\frac{5}{5-x}+\frac{10x}{x^2-25}\right)\cdot\left(1-\frac{5}{x}\right)\)
\(\Leftrightarrow M=\frac{x^2-5x+5x+25+10x}{\left(x+5\right)\left(x-5\right)}\cdot\frac{x-5}{x}\)
\(\Leftrightarrow M=\frac{\left(x^2+10x+25\right)\left(x-5\right)}{\left(x+5\right)\left(x-5\right)x}\)
\(\Leftrightarrow M=\frac{\left(x+5\right)^2}{x\left(x+5\right)}\)
\(\Leftrightarrow M=\frac{x+5}{x}\)
b) Để \(M\inℤ\)
\(\Leftrightarrow x+5⋮x\)
\(\Leftrightarrow5⋮x\)
\(\Leftrightarrow x\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Mà \(x\ne\pm5\)
\(\Leftrightarrow x\in\left\{1;-1\right\}\)
Vậy để \(M\inℤ\Leftrightarrow x\in\left\{1;-1\right\}\)
\(M=\left(\frac{x}{x+5}-\frac{5}{5-x}+\frac{10x}{x^2-25}\right)\cdot\left(1-\frac{5}{x}\right)\left(x\ne\pm5;x\ne0\right)\)
\(\Leftrightarrow M=\left(\frac{x}{x+5}+\frac{5}{x-5}+\frac{10x}{\left(x-5\right)\left(x+5\right)}\right)\cdot\frac{x-5}{x}\)
\(\Leftrightarrow M=\left(\frac{x^2-5x}{\left(x-5\right)\left(x+5\right)}+\frac{5x+25}{\left(x-5\right)\left(x+5\right)}+\frac{10x}{\left(x-5\right)\left(x+5\right)}\right)\cdot\frac{x-5}{x}\)
\(\Leftrightarrow M=\frac{x^2-5x+5x+25+10x}{\left(x-5\right)\left(x+5\right)}\cdot\frac{x-5}{x}\)
\(\Leftrightarrow M=\frac{x^2+10x+25}{\left(x-5\right)\left(x+5\right)}\cdot\frac{x-5}{x}\)
\(\Leftrightarrow M=\frac{\left(x+5\right)^2\left(x-5\right)}{\left(x-5\right)\left(x+5\right)x}=\frac{x+5}{x}\)
b) M là số nguyên thì x+5 chia hết cho x
=> 5 chia hết cho x
x nguyên => x thuộc Ư (5)={-5;-1;1;5}
Vậy x={-5;-1;1;5} thì M là số nguyên
a) \(=\frac{x-x+2}{x^2-4}:\frac{1-x+2}{x-2}\)ĐKXĐ:x\(\ne+-2\)
\(=\frac{2}{x^2-4}.\frac{x-2}{3-x}=\frac{2}{\left(x+2\right)\left(3-x\right)}\)
=\(\frac{2}{-x^2-x+6}\)
a, \(M=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
\(=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)
\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\frac{x^2-12-x}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)
c, Đặt \(\frac{x-4}{x-2}=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)( thỏa mãn )
Thử : \(\frac{x-4}{x-2}=\frac{4-4}{4-2}=0\)