Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M = ( 2x + 3)(2x - 3) - 2(x + 5)2 - 2(x - 1)(x + 2)
= 4x2 - 9 - 2(x2 + 10x + 25) - 2(x2 + x - 2)
= 4x2 - 9 - 2x2 - 20x - 50 - 2x2 - 2x + 4
= -22x - 55 = -11(2x + 5)
b) M = -11(2x + 5) = - 11(2.\(\frac{-7}{3}\)+ 5) = \(\frac{-11}{3}\)
b) M = -11(2x + 5) = 0
\(\Rightarrow\)2x + 5 = 0
\(\Rightarrow\)x = \(\frac{-5}{2}\)
Ta có: M = (2x+3)(2x-3) - 2(x+5)2 - 2(x-1)(x+2) \(=\left(2x\right)^2-3^2-2\left(x^2+10x+25\right)-\) \(2\left(x^2+x-2\right)\)
\(=4x^2-9-2x^2-20x-50-2x^2-2x+4\) =\(\left(4x^2-2x^2-2x^2\right)-\left(20x+2x\right)-\left(50+9-4\right)\) \(=-22x-55\)
b, Với x = \(-2\frac{1}{3}=\frac{-7}{3}\)
\(\Rightarrow M=-22.\frac{-7}{3}-55=\frac{154}{3}-55=\frac{-11}{3}\)
c, Để M = 0 => -22x - 55 = 0 \(\Rightarrow-22x=55\Rightarrow x=\frac{-55}{22}=\frac{-5}{2}\)
Vậy \(x=\frac{-5}{2}\)
\(ĐKXĐ:x\ne0;x\ne\pm2\)
a) \(M=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(\Leftrightarrow M=\left[\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\)
\(\Leftrightarrow M=\frac{3x^2-6x\left(x+2\right)+3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)
\(\Leftrightarrow M=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(\Leftrightarrow M=\frac{-18x\left(x+2\right)}{18x\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow M=-\frac{1}{x-2}\)
\(\Leftrightarrow M=\frac{1}{2-x}\)
b) Để M đạt giá trị lớn nhất
\(\Leftrightarrow2-x\)đạt giá trị nhỏ nhất
\(\Leftrightarrow x\)đạt giá trị lớn nhất
Vậy để M đạt giá trị lớn nhất thì x phải đạt giá trị lớn nhất \(\left(x\inℤ\right)\)
玉明, bạn làm sai rồi. Dấu ngoặc vuông là dấu phần nguyên không phải dấu ngoặc thường
a)Có A=\(\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)(ĐKXĐ \(x\ne2,-2,-1\))
=\(\left(\frac{2-x}{\left(2-x\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(2-x\right)\left(x+2\right)}-\frac{x}{\left(2-x\right)\left(2+x\right)}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
=\(\frac{2-x+2x+4-x}{\left(2-x\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
=\(\frac{6\left(2-x\right)\left(x+1\right)}{6\left(2-x\right)\left(x+2\right)^2}\)
=\(\frac{x+1}{\left(x+2\right)^2}\)
b)Có A=\(\frac{x+1}{\left(x+2\right)^2}\)
Để A>0 <=> x+1>0 <=>x>-1
c) Có x2+3x+2=0
<=> x2+2x+x+2=0
<=> x(x+2)+(x+2)=0
<=>(x+1)(x+2)=0
<=> x=-1 hoặc x=-2
a) A = x2(m + 5) - x(m + 5)(x + 3/2) + (x - m)
A = mx2 + 5x2 - mx2 - 3/2mx - 5x2 - 15/2x + x - m
A = -3/2mx - m - 13/2x
b) Khi m = -1, ta có:
(-3/2).(-1).x - (-1) - 13/2x = 0
<=> 3/2x - 13/2x + 1 = 0
<=> 3/2x - 13/2x = 0 - 1
<=> 3/2x - 13/2x = -1
<=> 3x - 13x = -2
<=> -10x = -2
<=> x = -2/-10 = 1/5