\(P=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)với x,y,z là các số nguyên d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Với x, y, z nguyên dương 

Ta có: \(\frac{x}{x+y}>\frac{x}{x+y+z}\)

          \(\frac{y}{y+z}>\frac{y}{x+y+z}\)

          \(\frac{z}{z+x}>\frac{z}{x+y+z}\)

\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x+y+z}{x+y+z}=1\)(1)

Mặt khác \(\frac{x}{x+y}< 1\Rightarrow\frac{x}{x+y}< \frac{x+z}{x+y+z}\)

           \(\frac{y}{y+z}< \frac{y+x}{x+y+z}\)

           \(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)

\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)(2)

Từ (1) và (2) => dpcm

14 tháng 1 2018

Có : x/x+y ; y/y+z ; z/z+x đều > 0

=> x/z+y + y/y+z + z/z+x > x/x+y+z + y/x+y+z + z/x+y+z = x+y+z/x+y+z = 1 (1)

Lại có : x,y,z > 0

=> 0 < x/x+y ; y/y+z ; z/z+x < 1

=> x/x+y + y/y+z + z/z+x < x+z/x+y+z + y+x/x+y+z + z+y/x+y+z = x+z+y+x+z+y/x+y+z = 2 (2)

Từ (1) và (2) => ĐPCM

Tk mk nha

8 tháng 1 2018

Cho 3 số nguyên dương chứ bạn ơi !

Có : x/x+y > 0 => x/x+y > x/x+y+z

Tương tự : y/y+z > y/x+y+z ; z/z+x > z/x+y+z

=> x/x+y + y/y+z + z/z+x > x+y+z/x+y+z = 1

Lại có : x < x+y => x/x+y < 1 => 0 < x/x+y < 1 => x/x+y < x+z/x+y+z

Tương tự : y/y+z < y+x/x+y+z ; z/z+x < z+y/x+y+z

=> x/x+y + y/y+z + z/z+x < x+z+y+x+z+y/x+y+z = 2

=> ĐPCM

Tk mk nha

2 tháng 12 2018

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+....+\frac{4031}{2015^2.2016^2}=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-.....-\frac{1}{2016^2}=1-\frac{1}{2016^2}\)

\(\frac{1}{2016^2}>0\Rightarrow A< 1\left(ĐPCM\right)\)

bạn chờ xíu mk lm câu sau nha

2 tháng 12 2018

Bạn chờ xíu mk lm cho xong nha

11 tháng 8 2017

1 <  x /x+y + y /y+x+ z /z+x < 2

=> 1 < (x + y + z) / (2x + 2y + 2z)  < 2

=> 1 <  ( x + y + z) / 2 x ( x+ y +z)  < 2

=>  1 < ( 1 /2 + 2 - 1) < 2

Vậy 1< 1,5 < 2 => 1 <  x /x+y + y /y+x+ z /z+x < 2

nhớ tích cho mk nhé! 

14 tháng 1 2018

\(1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{y+z}< 2\)

\(=>1< \left(x+y+z\right):2\left(x+y+z\right)< 2\)

\(=>1< \frac{1}{2}+2-1< 2\)

\(=>1< 1,5< 2\)

\(=>1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)

11 tháng 12 2016

Bạn ghi sai đề nhé chữa thành :

M=\(\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}\)

Giải

Ta có: \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)

\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)

\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)

\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)

=> M=\(\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}\)>\(\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)

=> M>1 (1)

Ta lại có: \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

\(\frac{x}{y+z+t}< \frac{x+y}{x+y+z+t}\)

\(\frac{z}{z+t+x}< \frac{z+y}{x+y+z+t}\)

\(\frac{t}{t+x+y}< \frac{t+z}{x+y+z+t}\)

=> M=\(\frac{x}{x+y+z}=\frac{y}{y+z+t}=\frac{z}{z+t+x}=\frac{t}{t+x+y}\)<

\(\frac{x+t}{x+y+z+t}+\frac{y+x}{x+y+z+t}+\frac{z+y}{x+y+z+t}=\frac{t+z}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)=> M<2 (2)

Từ (1) và (2) => 1<M<2

=> M không phải là số tự nhiên

 

 

31 tháng 3 2020

Ta  có:\(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t};\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t};\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t};\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)

Khi đó:\(M< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}\)

\(=\frac{2\left(x+y+z+t\right)}{x+y+z+t}\)

\(=2\)

\(\Rightarrow M^{10}< 2^{10}=1024< 2020\)

Vậy ta có điều fải chứng minh :D

1 tháng 12 2015

A= x+y-y/x+y + y+z-z/y+z + z+x-x/x+z

A=3 - ( x/x+z + y/x+y + z/y+z)

Mà:x/x+z>x/x+y+z,x/y+z>y/x+y+z;z/x+z>z/x+y+z

suy ra :A<2     (1)

Mặt khác A=x/x+y + y/y+z + z/x+z

Mà x/x+y>x/x+y+z;y/y+z>y/x+y+z;z/x+z>z/x+y+z

suy ra A=1        (2)

Từ (1) và (2) suy ra 1<A<2 suy ra A ko phải là số nguyên

23 tháng 12 2016

a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)

\(\Rightarrow3⋮a+1\)

\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)

b) Phần 1

\(x-2xy+y=0\)

\(\Rightarrow2x-4xy+2y=0\)

\(\Rightarrow2x-4xy+2y-1=-1\)

\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Lập bảng xét Ư(-1)={1;-1}

Phần 2:

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)

+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)

+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)

Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy P có giá trị nguyên