K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

a) Để A là p/số

\(\Rightarrow n+3\ne0\)

\(\Rightarrow n\ne-3\)

b) Để\(A\inℤ\)

\(\Rightarrow n-3⋮n+3\)

\(\Leftrightarrow n-3=n+3-6\)

\(\Rightarrow6⋮n+3\)

\(\Rightarrow n+3\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

\(\Rightarrow n\in\left\{-2;-4;-1;-5;0;-6;3;-9\right\}\)

Vì :\(n\inℕ\)

\(\Rightarrow n\in\left\{0;3\right\}\)

c)\(\frac{n-3}{n+3}=\frac{n+3-6}{n+3}=1-\frac{6}{n+3}\)

Để A tối giản

\(\LeftrightarrowƯCLN\left(n-3;n+3\right)=1\)

\(\LeftrightarrowƯCLN\left(-6;n-3\right)=1\)

\(\Rightarrow n-3⋮̸\)\(-6\)

\(\Rightarrow n-3\ne6k\)

\(\Rightarrow n\ne6k+3\)

15 tháng 4 2019

a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)

Vậy điều kiện của n để A là phân số là \(n\ne1\)

Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)

=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)

Lập bảng :

n - 11-15-5
n206-4

b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)

Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow(n+1)-n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy : .....

Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)

để A là số nguyên thì n-1 chia hết cho 5

suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}

* Xét trường hợp:

TH1 n-1=1 suy ra n=2(TM)

TH2 n-1=-1 suy ra n=0 (TM)

TH3 n-1=5 suy ra n=6(TM)

TH4n-1=-5 suy ra n=-4(TM)                                  ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)

vậy n thuộc { -4;0;2;6}

# HỌC TỐT #

23 tháng 2 2018

a) \(n-2\ne0\Leftrightarrow n\ne2\)

b) \(\frac{15}{n-2}\in Z\)  khi   \(n-2\inƯ\left(15\right)\)

\(\Leftrightarrow n-2\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)

đến đây tự lập bảng rồi làm 

23 tháng 2 2018

a, n-2 khác 0 nên n khác 2 

b, n-2 là ước của 15 vậy n-2 = { +-1;+-3;+-5;+-15} tương ứng ta có 

n-2 = -1 => n=1 Tm

n-2 =1 => n=3 Tm

n-2=3 => n= 5 Tm 

tương tự tìm các giá trị còn lại nhé 

ks cho mình nhé 

14 tháng 4 2015

a, mẫu số khác 0 -> n khác 1. Vì 5 là số nguyên tố nên muôn A tối giản ( tử số và mẫu số ko cùng chia hết cho số nào khác 1 ) thì 5 ko chia hết cho n-1 hoặc n-1 ko đc chia hết cho 5.-> n khác 5k+1 ( k thuộc Z)

b. Gọi UCLN (n,n+1) = d -> n chia hết cho d; n+1 chia hết cho d 

->(n+1) - n chia hết cho d -> 1 chia hết cho d -> d=1

UCLN(n,n+1) = 1 thì phân số tối giản

c. A= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +....+1/49 - 1/50

= 1- 1/50 <1 ( Vì trừ đi 1 số lớn hơn 0)

 

14 tháng 4 2015

b;Gọi ƯCLN (n;n+1) là :d

ta có :n chia hết cho d;n+1 chia hết cho d

      => n+1 - n chia hết cho d

      => 1 chia hết cho d

      =>1=d

vậy \(\frac{n}{n+1}\)

     tối giản

 

4 tháng 5 2016

bó tay

10 tháng 7 2016

vyitclucryzjtfuyddiydiydxdgzth

Để phân số \(\frac{7}{n+1}\) là phân số tối giản thì cần 2 điều kiện

1.n+1\(\ne\)0=>n\(\ne\)-1

2.n+1\(⋮̸\)7=>n+1\(\ne\)7k(kEN)=>n\(\ne\)7k-1

9 tháng 5 2016

Để \(\frac{7}{n+1}\) là phân số tối giảnbanh

Thì 7 chia hết cho n+1

\(\Rightarrow\)n+1\(\in\)Ư(7)

Vậy Ư(7)là:[1,-1,7,-7]

     Do đó ta có bảng sau:

n+1-1-717
n-2-806

Vậy n=-2;-8;0;6

5 tháng 5 2021

khó quá