Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mong mọi người giúp đỡ mình , mình đang cần gấp , cảm ơn mọi người
Ta có HĐT : \(\hept{\begin{cases}a\sqrt{a}+b\sqrt{b}=\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\\a\sqrt{a}-b\sqrt{b}=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)\end{cases}\left(a,b\ge0\right)}\)
\(P=\left(\frac{2a+1}{a\sqrt{a}-1}-\frac{\sqrt{a}}{a+\sqrt{a}+1}\right)\times\left(\frac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\)
ĐKXĐ : \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)
\(=\left(\frac{2a+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}-\frac{\sqrt{a}}{a+\sqrt{a}+1}\right)\times\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
\(=\left(\frac{2a+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\times\left(\frac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}+a\right)}{1+\sqrt{a}}-\sqrt{a}\right)\)
\(=\left(\frac{2a+1-a+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\times\left(1-\sqrt{a}+a-\sqrt{a}\right)\)
\(=\frac{a+\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\times\left(a-2\sqrt{a}+1\right)\)
\(=\frac{1}{\sqrt{a}-1}\times\left(\sqrt{a}-1\right)^2\)
\(=\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}-1}=\sqrt{a}-1\)
b) \(P\times\sqrt{1-a}\)
\(=\left(\sqrt{a}-1\right)\times\sqrt{1-a}\)
ĐKXĐ: \(0\le x< 1\)
Với \(0\le x< 1\)
Ta có :\(\hept{\begin{cases}\sqrt{a}\le\sqrt{1}=1\Rightarrow\sqrt{a}-1\le0\\\sqrt{1-a}\ge0\end{cases}}\)
\(\Rightarrow\left(\sqrt{a}-1\right)\left(\sqrt{1-a}\right)\le0\)
a) ĐKXĐ : \(a\ge0;a\ne1\)
Ta có: \(P=\left(\frac{2a+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\cdot\left(\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)}-\sqrt{a}\right)\) \(=\frac{2a+1-a+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\cdot\left(a-\sqrt{a}+1-\sqrt{a}\right)\)
\(=\frac{1}{\left(\sqrt{a}-1\right)}\cdot\left(\sqrt{a}-1\right)^2=\sqrt{a}-1\)
\(a,Đkxđ:\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(P=\left(\frac{2a+1}{\sqrt{a^3}-1}-\frac{\sqrt{a}}{a+\sqrt{a}+1}\right)\left(\frac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\)
\(=\frac{2a+1-\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\left(a-\sqrt{a}+1-\sqrt{a}\right)\)
\(=\frac{2a+1-a+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\left(\sqrt{a}-1\right)^2\)
\(=\frac{a+\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\left(\sqrt{a}-1\right)^2\)
\(=\sqrt{a}-1\)
\(b,\) Ta có: \(P\sqrt{1-a}=\left(\sqrt{a}-1\right)\sqrt{1-a}\) với \(a\ge0\) và \(a< 1\)
\(\Rightarrow\sqrt{a}< 1\)
\(\Rightarrow\sqrt{a}-1< 0\)
\(\Rightarrow P\sqrt{1-a}< 0\)
Vậy ............
\(1+\left(\frac{a+2\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right)\cdot\frac{a-\sqrt{a}}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(1+\sqrt{a}+a\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}}{\left(1-\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(1-\sqrt{a}\right)}{\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}}{\left(1-\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(1+\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\frac{1-2\sqrt{a}+a-\sqrt{a}-a}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\frac{1-2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\frac{1-2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(1-\sqrt{a}\right)}{1-2\sqrt{a}}\)
\(=1+\frac{\sqrt{a}}{\left(1+\sqrt{a}\right)}\)
\(=\frac{1+\sqrt{a}+\sqrt{a}}{1+\sqrt{a}}\)
\(=\frac{1+2\sqrt{a}}{1+\sqrt{a}}\)