Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x-2}\)
b) \(\frac{3}{x-2}=1,5\Rightarrow x=4\)
bài1 A=\(\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
=\(\left(-\frac{x-3\cdot\left(x+3\right)^2}{\left(x+3\right)^2\cdot\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
=\(-\frac{x}{x+3}\cdot\frac{x+3}{3x^2}=\frac{-1}{3x}\)
b) thế \(x=-\frac{1}{2}\)vào biểu thức A
\(-\frac{1}{3\cdot\left(-\frac{1}{2}\right)}=\frac{2}{3}\)
c) A=\(-\frac{1}{3x}< 0\)
VÌ (-1) <0 nên 3x>0
x >0
a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\left(x\ne\pm1;x\ne0\right)\)
\(\Leftrightarrow A=\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-5x}{\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{x\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x+1\right)x}=\frac{x-3}{x+1}\)
Vậy \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)
b) \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)
Để A nhận giá trị nguyên thì x-3 chia hết chi x+1
=> (x+1)-4 chia hết chi x+1
=> 4 chia hết cho x+1
x nguyên => x+1 nguyên => x+1 thuộc Ư (4)={-4;-2;-1;1;2;4}
Ta có bảng
x+1 | -4 | -2 | -1 | 1 | 2 | 4 |
x | -5 | -3 | -2 | 0 | 1 | 3 |
ĐCĐK | tm | tm | tm | ktm | ktm | tm |
Vậy x={-5;-3;-2;3} thì A đạt giá trị nguyên
c) I3x-1I=5
\(\Rightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{-4}{3}\end{cases}}}\)
Đên đây thay vào rồi tính nhé
a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne0\end{cases}}\)
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{\left(x^2-x\right)\left(x-3\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow A=\frac{x-3}{x+1}\)
b) Để \(A\inℤ\)
\(\Leftrightarrow x-3⋮x+1\)
\(\Leftrightarrow x+1-4⋮x+1\)
\(\Leftrightarrow4⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow x\in\left\{0;-2;-3;1;3;-5\right\}\)
Mà \(x\ne0;x\ne1\)
\(\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)
c) Khi \(\left|3x-1\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)
Vì khi x = 2 hoặc x = -4/3 thì x không thuộc tập hợp các giá trị làm cho A nguyên
Vậy khi |3x - 1| = 5 thì để cho A nguyên \(\Leftrightarrow x\in\varnothing\)
câu a, phân tích từng mẫu thành nhân tử (nếu cần)
rồi tìm mtc, ở đây, nhân chia cũng như cộng trừ, nên phân tích hết rồi ra mtc, đkxđ là cái mtc ấy khác 0
câu b với c tự làm
câu d thì lấy cái rút gọn rồi của câu b, rồi giải ra, để nguyên thì mẫu là ước của tử, thế thôi
a, ĐKXĐ: x\(\ne\) 1;-1;2
b, A= \(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{2x^2-2x}{2\left(x+1\right)\left(x-1\right)}+\frac{2x+2}{2\left(x+1\right)\left(x-1\right)}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-2}{x+1}\)
=\(\frac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{x-2}{x-1}\)
c, Khi x= -1
→A= \(\frac{-1-2}{-1-1}\)
= -3
Vậy khi x= -1 thì A= -3
Câu d thì mình đang suy nghĩ nhé, mình sẽ quay lại trả lời sau ^^
a,ĐKXĐ:x#1; x#-1; x#2
b,Ta có:
A=\(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{x\left(x-1\right)2}{\left(x+1\right)\left(x-1\right)2}+\frac{\left(x+1\right)2}{\left(x-1\right)\left(x+1\right)2}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{x-2}\)
=\(\frac{2x^2-2x+2x+2+4x}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{x-2}{x+1}\)
c,Tại x=-1 ,theo ĐKXĐ x#-1 \(\Rightarrow\)A không có kết quả
d,Để A có giá trị nguyên \(\Rightarrow\frac{x-2}{x+1}\)có giá trị nguyên
\(\Leftrightarrow x-2⋮x+1\)
\(\Leftrightarrow x+1-3⋮x+1\)
Mà \(x+1⋮x+1\Rightarrow3⋮x+1\)
\(\Rightarrow x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{0;-2;2;-4\right\}\)
Mà theo ĐKXĐ x#2\(\Rightarrow x\in\left\{0;-2;-4\right\}\)
Vậy \(x\in\left\{0;-2;-4\right\}\)thì a là số nguyên