Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Rút gọn Biểu thức:
A=\(\left(\dfrac{x+2}{2x-4}-\dfrac{x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)
= \(\left(\dfrac{x+2}{2x-4}+\dfrac{-x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)
= \(\left(\dfrac{x+2+-x-2}{2x-4+2x+4}\right):\dfrac{2x}{x2+2x}\)
= 0 \(:\dfrac{2x}{x2+2x}\)
b, \(\left(\dfrac{x+2}{2x-4}-\dfrac{x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)
Thay tất cả x= -4
=> \(\left(\dfrac{-4+2}{2-4-4}-\dfrac{-4-2}{2-4+4}\right):\dfrac{2.-4}{-4.2+2.-4}\)
= -16 : \(\dfrac{1}{3}\)
= -18
1, a, để A có giá trị xác định <=> 5x-5y \(\ne\) 0 => 5x\(\ne\)5y =>x\(\ne\)y b, A=\(\dfrac{x^2-y^2}{5x-5y}=\dfrac{\left(x+y\right)\left(x-y\right)}{5\left(x-y\right)}=\dfrac{\left(x+y\right)}{5}\) 2, a,
A=\(\dfrac{2x^3+4x}{x^3-4x}+\dfrac{x^2-4}{x^2+2x}+\dfrac{2}{2-x}\) =\(\dfrac{2x\left(x+2\right)}{x\left(x^2-4\right)}+\dfrac{\left(x+2\right)\left(x-2\right)}{x\left(x+2\right)}-\dfrac{2}{x-2}\) =\(\dfrac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x}-\dfrac{2}{x-2}\) =\(\dfrac{2x}{x\left(x-2\right)}+\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}-\dfrac{2x}{x\left(x-2\right)}\) =\(\dfrac{2x+\left(x-2\right)^2-2x}{x\left(x-2\right)}\) =\(\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}\) =\(\dfrac{\left(x-2\right)}{x}\)
b, thay x=4 vào A ta có : A=\(\dfrac{4-2}{4}\) =\(\dfrac{2}{4}=\dfrac{1}{2}\)
c, để A \(\in\) Z => (x-2)\(⋮\)x mà x\(⋮\)x =>-2\(⋮\)x => x\(\in\){ \(\pm1;\pm2\)} mà x\(\ne\)\(\pm2\) => x\(\in\left\{-1,+1\right\}\)
Bài 3 : a, Ta có B= 2.(-1)2+-(-1)+1 =2+1+1=4 b, Ta có A=2x3 +5x2 -2x +a =(2x3 -x2 +x )+(6x2-3x +3) +(a-3) \(⋮\) 2x2-x+1 => x(2x2-x+1)+3(2x2-x+1) +(a-3)\(⋮\) 2x2-x+1
=>a-3=0 (vì a-3 là số dư )=>a-3 Vậy a=3 thì A\(⋮\)B c,B=1 => 2x2 -x+1=1 =>x(2x-1)=0 => x=0 hoặc 2x-1 =0 => x=0 hoặc x=\(\dfrac{1}{2}\)
\(A=\dfrac{x+2}{x+3}-\dfrac{5}{\left(x-2\right)\left(x+3\right)}+\dfrac{1}{2-x}\)
a ) ĐKXĐ :\(x\ne2\) và \(x\ne-3\).
Rút gọn : \(A=\dfrac{x+2}{x+3}-\dfrac{5}{\left(x-2\right)\left(x+3\right)}+\dfrac{1}{2-x}\)
\(\Leftrightarrow A=\dfrac{x+2}{x+3}-\dfrac{5}{\left(x-2\right)\left(x+3\right)}-\dfrac{1}{x-2}\)
\(\Leftrightarrow A=\dfrac{\left(x+2\right)\left(x-2\right)-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow A=\dfrac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{x-4}{x-2}\)
b ) Khi \(A=-\dfrac{3}{4},\) thì :
\(\dfrac{x-4}{x-2}=-\dfrac{3}{4}\)
\(\Leftrightarrow4\left(x-4\right)=-3\left(x-2\right)\)
\(\Leftrightarrow4x-16=-3x+6\)
\(\Leftrightarrow x=\dfrac{22}{7}\).
c ) Ta có : \(\dfrac{x-4}{x-2}=\dfrac{x-2-2}{x-2}=1-\dfrac{2}{x-2}\)
Vậy để A nguyên thi \(x-2⋮2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Thay vào từng cái sẽ ra nha :**
d ) Ta có : \(x^2-9=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
+ ) Khi x = 3 , thì :
\(A=\dfrac{3-4}{3-2}=\dfrac{-1}{1}=-1\)
+ ) Khi x = -3, thì :
\(A=\dfrac{-3-4}{-3-2}=\dfrac{-7}{-5}=\dfrac{7}{5}.\)
Vậy ........
\(\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{5x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
a ) ĐKXĐ : \(x\ne0,x\ne-5\)
b ) Rút gọn trước cái đã
\(\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{5x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+10x^2+50x-10x-50+50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+12x^2+35x}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x+5\right)\left(x+7\right)}{2x\left(x+5\right)}=\dfrac{x+7}{2x}\)
Khi \(A=1\), thì :
\(\dfrac{x+7}{2x}=1\Leftrightarrow x=7\)
Khi A = 3, thì :
\(\dfrac{x+7}{2x}=3\Leftrightarrow x=-1.\)
Bài 2 :
a ) ĐKXĐ : x\(\ne-3;2\)
b ) \(\dfrac{x-2}{x+3}-\dfrac{5}{\left(x-2\right)\left(x+3\right)}+\dfrac{1}{2-x}\)
\(=\dfrac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{x-4}{x-2}\)
c ) Khi \(A=-\dfrac{3}{4}\), thì :
\(\dfrac{x-4}{x-2}=-\dfrac{3}{4}\)
\(\Leftrightarrow4x-16=-3x+6\)
\(\Leftrightarrow x=\dfrac{22}{7}\)
d ) Ta có :
\(A=\dfrac{x-4}{x-2}=\dfrac{x-2-2}{x-2}=1-\dfrac{2}{x-2}\)
Để A nguyên thi \(x-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Thay vào rồi tìm ra nếu x có trong đkxđ thì loại .
e ) \(x^2-9=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Thay từng x vào A là tìm ra
1)
\(\Leftrightarrow\left(x^2-2+\dfrac{1}{x^2}\right)+\left(y^2-2+\dfrac{1}{y^2}\right)+z^2=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2+z^2=0\)
\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\Rightarrow\left|x\right|=1\\y-\dfrac{1}{y}=0\Rightarrow\left|y\right|=1\\z=0\end{matrix}\right.\)
dk\(x,y,z,a,b,c\ne0\)\(\left\{{}\begin{matrix}\dfrac{a}{x}=A\\\dfrac{b}{y}=B\\\dfrac{c}{z}=C\end{matrix}\right.\) \(\Rightarrow A,B,C\ne0\)
\(\left\{{}\begin{matrix}A+B+C=2\\\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}A^2+B^2+C^2+2\left(AB+BC+AC\right)=4\\\dfrac{ABC}{A}+\dfrac{ABC}{B}+\dfrac{ABC}{C}=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}AB+BC+AC=0\\A^2+B^2+C^2=4\end{matrix}\right.\)
\(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2=4\)
a: \(B=\left(\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5}{2x-3}\right):\left(3-\dfrac{2}{x-1}\right)\)
\(=\dfrac{2x-5x+5}{\left(2x-3\right)\left(x-1\right)}:\dfrac{3x-3-2}{x-1}\)
\(=\dfrac{-\left(3x-5\right)}{\left(2x-3\right)\left(x-1\right)}\cdot\dfrac{x-1}{3x-5}=\dfrac{-1}{2x-3}\)
b: Để B>0 thì 2x-3<0
hay x<3/2
a, A = \(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}+\dfrac{x^2+3}{4-x^2}\)
\(=\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}-\dfrac{x^2+3}{x^2-4}\)
\(=\dfrac{\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)-x^2-3}{x^2-4}\)
\(=\dfrac{x^2+1}{x^2-4}\)
b, Để A> 0 thì \(x^2+1\) và \(x^2-4\) phải cùng dấu
mà \(x^2+1>0\)
=> \(x^2-4>0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
c, Thay A=\(\dfrac{x^2+1}{x^2-4}\) vào ta được:
\(\left|\dfrac{x^2+1}{x^2-4}.\left(x^2-4\right)\right|=2\)
\(\Leftrightarrow\left|x^2+1\right|=2\)
T/h 1: \(x^2+1=2\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)
T/h 2: \(x^2+1=-2\Leftrightarrow x^2=-3\) (loại)
\(a.P=1+\dfrac{x+3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)=\dfrac{x+3}{x+2}:\left(\dfrac{2}{x-2}-\dfrac{3}{x^2-4}-\dfrac{1}{x+2}\right)=\dfrac{x+3}{x+2}.\dfrac{\left(x+2\right)\left(x-2\right)}{2x+4-3-x+2}=\left(x+3\right).\dfrac{x-2}{x+3}=x-2\left(x\ne\pm2;x\ne-3\right)\)
\(b.P=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(KTM\right)\)
\(P=1\Leftrightarrow x-2=1\Leftrightarrow x=3\left(TM\right)\)
\(c.P>0\Leftrightarrow x-2>0\Leftrightarrow x>2\)
a) điều kiện \(x\ne\pm2\)
\(A=\left(\dfrac{4}{x+2}+\dfrac{2}{x-2}+\dfrac{5x-6}{4-x^2}\right):\dfrac{1}{3x-2x^2-6}\)
\(A=\left(\dfrac{4}{x+2}+\dfrac{2}{x-2}-\dfrac{5x-6}{x^2-4}\right):\dfrac{1}{3x-2x^2-6}\)
\(A=\left(\dfrac{4}{x+2}+\dfrac{2}{x-2}-\dfrac{5x-6}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{1}{3x-2x^2-6}\)
\(A=\dfrac{4\left(x-2\right)+2\left(x+2\right)-\left(5x-6\right)}{\left(x+2\right)\left(x-2\right)}:\dfrac{1}{3x-2x^2-6}\)
\(A=\dfrac{4x-8+2x+4-5x+6}{\left(x+2\right)\left(x-2\right)}:\dfrac{1}{3x-2x^2-6}\)
\(A=\dfrac{x+2}{\left(x+2\right)\left(x-2\right)}:\dfrac{1}{3x-2x^2-6}\)
\(A=\dfrac{1}{x-2}.\dfrac{3x-2x^2-6}{1}=\dfrac{3x-2x^2-6}{x-2}\)
b) ta có : \(3x-2x^2-6=-2x^2+3x-6=-\left(2x^2-3x+6\right)\)
\(=\left(\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\dfrac{3}{2\sqrt{2}}+\left(\dfrac{3}{2\sqrt{2}}\right)^2\right)+\dfrac{39}{8}\)
\(=\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2+\dfrac{39}{8}\ge\dfrac{39}{8}>0\)
\(\Rightarrow A\le0\) \(\Leftrightarrow x-2\le0\) (mà đk : \(x\ne2\) \(\Rightarrow x-2\ne0\))
vậy \(A\le0\Leftrightarrow A< 0\) \(\Leftrightarrow x-2< 0\Leftrightarrow x< 2\) vậy \(x< 2\)
tui dở toán nhw chắc bn đúng á.(Đúng chuẩn nhân vật có chỉ số IQ cao top 10 trong conan và magic kaito:)))