Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(1+\frac{9^{2010}}{1+9+9^2+....+9^{2009}}\)= \(1+1:\frac{1+9+9^2+....+9^{2009}}{9^{2010}}\)= \(1+1:\left(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+\frac{1}{9^{2008}}+...+\frac{1}{9}\right)\)
B = \(1+\frac{5^{2010}}{1+5+5^2+....+5^{2009}}\)= \(1+1:\frac{1+5+5^2+...+5^{2009}}{5^{2010}}\)= \(1+1:\left(\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\right)\)
Do \(\frac{1}{9^{2010}}<\frac{1}{5^{2010}}\) ; \(\frac{1}{9^{2009}}<\frac{1}{5^{2009}}\) ;.....; \(\frac{1}{9}<\frac{1}{5}\)
=> \(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+...+\frac{1}{9}<\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\)
=> 1:\(\left(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+...+\frac{1}{9}\right)>1:\left(\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\right)\)
Vậy A > B
Ta có :
+) \(A=\dfrac{1+9+9^2+...+9^{2009}}{1+9+9^2+...+9^{2009}}+\dfrac{9^{2010}}{1+9+9^2+...+9^{2009}}\)
\(A=1+1:\dfrac{1+9+9^2+...+9^{2009}}{9^{2010}}\)
\(A=1+1:\left(\dfrac{1}{9^{2010}}+\dfrac{1}{9^{2009}}+...+\dfrac{1}{9}\right)\)
+) \(B=\dfrac{1+5+5^2+...+5^{2009}}{1+5+5^2+...+5^{2009}}+\dfrac{5^{2010}}{1+5+5^2+...+5^{2009}}\)
\(B=1+1:\dfrac{1+5+5^2+...+5^{2009}}{5^{2010}}\)
\(B=1+1:\left(\dfrac{1}{5^{2010}}+\dfrac{1}{5^{2009}}+...+\dfrac{1}{5}\right)\)
Vì \(\dfrac{1}{9^{2010}}< \dfrac{1}{5^{2010}}\)
\(\dfrac{1}{9^{2009}}< \dfrac{1}{5^{2009}}\) (ngoặc cả mấy cài so sánh này vào rôi mời suy ra nhé)
.............................
\(\dfrac{1}{9}< \dfrac{1}{5}\)
\(\)=> \(\dfrac{1}{9^{2010}}+\dfrac{1}{9^{2009}}+...+\dfrac{1}{9}< \dfrac{1}{5^{2010}}+\dfrac{1}{5^{2009}}+...+\dfrac{1}{5}\)
=> \(1:\left(\dfrac{1}{9^{2010}}+\dfrac{1}{9^{2009}}+...+\dfrac{1}{9}\right)>1:\left(\dfrac{1}{5^{2010}}+\dfrac{1}{5^{2009}}+...+\dfrac{1}{5}\right)\)
=> \(1+1:\left(\dfrac{1}{9^{2010}}+\dfrac{1}{9^{2009}}+...+\dfrac{1}{9}\right)>1+1:\left(\dfrac{1}{5^{2010}}+\dfrac{1}{5^{2009}}+...+\dfrac{1}{5}\right)\)
Hay A > B
a,Ta co:\(A=\frac{2005^{2005}+1}{2005^{2006}+1}<\frac{2005^{2005}+1+2004}{2005^{2006}+1+2004}=\frac{2005^{2005}+2005}{2005^{2006}+2005}\)
\(=\frac{2005\left(2005^{2004}+1\right)}{2005\left(2005^{2005}+1\right)}=\frac{2005^{2004}+1}{2005^{2005}+1}\) =B Vay A<B
b,lam tuong tu nhu y a
Giúp vsssssssssssssssssssssssssssssssssssssssss nhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa .........................
b: \(B=1-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\)
\(=1-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=1-\left(\dfrac{1}{2}-\dfrac{1}{100}\right)=\dfrac{1}{2}-\dfrac{49}{100}=\dfrac{1}{100}\)
Đặt M = \(1+9+9^2+......+9^{2010}\)
\(9M=9+9^2+9^3+......+9^{2011}\)
\(9M-M=8M=9^{2011}-1\)
Đặt K = \(1+9+9^2+......+9^{2009}\)
\(9K=9+9^2+9^3+.....+9^{2010}\)
\(9K-K=8K=9^{2010}-1\)
\(\Rightarrow A=\frac{9^{2011}-1}{9^{2010}-1}\)
Đặt H=\(1+5+5^2+....+5^{2010}\)
\(5H=5+5^2+......+5^{2011}\)
\(5H-H=4H=5^{2011}-1\)
ĐẶT G = \(1+5+5^2+.......+5^{2009}\)
\(5G-G=4G=5^{2010}-1\)
\(\Rightarrow B=\frac{5^{2011}-1}{5^{2010}-1}\)
Rồi bạn so sánh sẽ ra ngay