Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SỬa đề: x^3-xy^2
\(A=\left(\dfrac{x\left(x-y\right)}{y\left(x+y\right)}+\dfrac{x^2-y}{x\left(x+y\right)}\right):\left(\dfrac{y^2}{x\left(x^2-y^2\right)}+\dfrac{1}{x-y}\right)\)
\(=\left(\dfrac{x^2\left(x-y\right)+y\left(x^2-y\right)}{xy\left(x+y\right)}\right):\left(\dfrac{y^2}{x\left(x-y\right)\left(x+y\right)}+\dfrac{x\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}\right)\)
\(=\dfrac{x^3-x^2y+x^2y-y^3}{xy\left(x+y\right)}:\dfrac{y^2+x^2+xy}{x\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy\left(x+y\right)}\cdot\dfrac{x\left(x-y\right)\left(x+y\right)}{x^2+xy+y^2}=\dfrac{\left(x-y\right)^2}{y}\)
Để A>0 thì y>0
\(P=\dfrac{2}{x}-\left(\dfrac{x^2y}{xy\left(x-y\right)}+\dfrac{\left(x^2-y^2\right)\left(x-y\right)}{xy\left(x-y\right)}+\dfrac{xy^2}{xy\left(x-y\right)}\right).\dfrac{x-y}{x^2-xy+y^2}\)
\(P=\dfrac{2}{x}-\left(\dfrac{x^2y+x^3-x^2y-xy^2+y^3+xy^2}{x\left(x-y\right)}\right).\dfrac{x-y}{x^2-xy+y^2}\)\(P=\dfrac{2}{x}-\dfrac{x^3+y^3}{x\left(x-y\right)}.\dfrac{x-y}{x^2-xy+y^2}=\dfrac{2}{x}-\dfrac{\left(x-y\right)\left(x^2-xy+y^2\right)}{x\left(x-y\right)}.\dfrac{x-y}{x^2-xy+y^2}=\dfrac{2}{x}-\dfrac{x-y}{x}=\dfrac{2-x-y}{x}\)Vậy \(P=\dfrac{2-x-y}{x}\)
a. Để x , y xác định thì \(x\ne0\) ; x2 - xy khác 0 ; y2 - xy khác 0 ; x - y khác 0
=> x khác 0; x(x-y) khác 0; xy khác 0 ; y(y-x) khác 0
* Với x(x-y) khác 0 => x khác 0 hoặc x - y khác 0
=> x khác 0 hoặc x khác y
* y(y-x) khác 0 suy ra y khác 0 hoặc y - x khác 0
=> x khác y
Vậy để P xác định thì x và y khác 0 ; và x khác y
A=(xy2+xy−x−yx2+xy)(xy2+xy−x−yx2+xy) : (y2x3−xy2+1x+y):xy
A=( \(\dfrac{x}{y\left(x+y\right)}\) - \(\dfrac{x-y}{x\left(x+y\right)}\)) : (\(\dfrac{y^2}{x\left(x-y\right)\left(x+y\right)}\)+\(\dfrac{1}{x+y}\)) : \(\dfrac{x}{y}\)
A=\(\dfrac{x^2-y\left(x-y\right)}{xy\left(x+y\right)}\) : \(\dfrac{y^2+x\left(x-y\right)}{x\left(x-y\right)\left(x+y\right)}\) : \(\dfrac{x}{y}\)
A = \(\dfrac{x^2-xy+y^2}{xy\left(x+y\right)}\) : \(\dfrac{y^2-xy+x^2}{x\left(x-y\right)\left(x+y\right)}\):\(\dfrac{x}{y}\)
A = \(\dfrac{x^2-xy+y^2}{xy\left(x+y\right)}\). \(\dfrac{x\left(x-y\right)\left(x+y\right)}{x^2-xy+y^2}\):\(\dfrac{x}{y}\)
A = \(\dfrac{x-y}{y}\) : \(\dfrac{x}{y}\)
A = \(\dfrac{x-y}{x}\)
A= 1 - \(\dfrac{y}{x}\)>1
=> y/x <0
=> xy<0 , x+y khác 0
\(a,\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)
\(=\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)
\(=\frac{2\left(x-2\right)}{x+2}\)
Với \(x=\frac{1}{2}\)
\(\Rightarrow\frac{2\left(x-2\right)}{x+2}=\frac{2\left(\frac{1}{2}-2\right)}{\frac{1}{2}+2}=\frac{2.-\frac{3}{2}}{\frac{5}{2}}=-3.\frac{2}{5}=\frac{-6}{5}\)
b,Do x = -5; y = 10=> y = -2x
Thay y = -2x vào biểu thức ta được
\(\frac{x^3-x^2\left(-2x\right)+x\left(-2x\right)^2}{x^3+\left(-2x\right)^3}\)
\(=\frac{x^3+2x^3+2x^2}{x^3-8x^3}\)
\(=\frac{3x^3+2x^2}{-7x^3}=\frac{3}{-7}+\frac{2}{-7x}\)
Thay x = -5 là đc