K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2016

(2 mũ 0+2 mũ 1 + 2 mũ 2 + 2 mũ 3)+...+(2 mũ 97+2 mũ 98+2 mũ 99+2 mũ 100)

=(  1     +   2      +     4      +     8    )+...+(2 mũ 97x1+2 mũ 97x2 +2 mũ 97x4+2 mũ 97x8)

=                 15                              +...+ 2 mũ 97x(1+2+4+8)

=                  15                             +...+2 mũ 97x15 

chia hêt cho 15 dư 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sai roi du 1 do ban

2 tháng 1 2019

mk chỉ làm đc câu a) bài 1 thôi nha !

Bài 1 .

Ta có :

 a) A = (2+22)+(23+24)+...+299+2100

=> A = (1+2).21+(1+2).23+...+(1+2).299

=> A = 3.(21+23+...+299\(⋮\)3

=> A \(⋮\)3

13 tháng 12 2019

A = 2 + 22+ 23+........+ 2100 2A = 2. ( 2 + 22+23+..........+ 2100 ) 2A = 2.2+ 2.22+2.23+.........+ 2.2100 2A = 22+23+24+........+2101

28 tháng 11 2015

Cristiano Ronaldo ko thấy đề hỏi c/m đó hay sao mà còn hỏi

28 tháng 11 2015

Bạn vô đây tham khảo nha Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

16 tháng 10 2018

TA CÓ:6A=    1.6+6.6+6.6^2+..........+6^1000.6

            6A=    6+6^2+6^3+        +6^1000+6^1001

              A=1+6+6^2+........+6^1000

       6A-A=6^1001-1

vì 6^1001 chia hết cho 6:;1 chia 6 dư 5 suy ra A chia 6 dư 5

25 tháng 10 2018

minh nham chia A cho 7

2 tháng 5 2020

\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)

\(=1+2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(=3+2^2.\left(1+2+4\right)+...+2^{98}.\left(1+2+4\right)\)

\(=3+7.\left(2^2+2^5+...+2^{98}\right)\)chia 7 dư 3

3 tháng 5 2020

\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)

\(S=\left(2^0+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{98}+2^{99}+2^{100}\right)\)

\(S=\left(1+2+4\right)+2^3\left(1+2+4\right)+.....+2^{98}\left(1+2+4\right)\)

\(S=7+2^3\cdot7+....+2^{98}\cdot7\)

\(S=7\left(1+2^3+...+2^{98}\right)\)

=> S chia 7 dư 0 hay S chia hết cho 7

Mình chỉ biết làm ý a thôi :)

S = 21 + 22 + 23 + ... + 299 + 2100

S = ( 21 + 22 ) + ... + ( 299 + 2100 )

S = 21( 1 + 2 ) + ... + 299 ( 1 + 2 )

S = 21 . 3 + ... + 299 . 3

S = 3( 21 + ... + 299 ) chia hết cho 3

11 tháng 3 2020

cho \(M=1+3+3^2+...+3^{99}+3^{100}\)

=>\(M=1+\left(3+3^2+3^3\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(=>M=1+3\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)

\(=>M=1+13\left(3+...+3^{98}\right)\)

Mà \(13\left(3+3^{98}\right)⋮13\)

=> M chia cho 13 dư 1

11 tháng 3 2020

+) \(M=1+3+3^2+...+3^{99}+3^{100}\)

\(\Leftrightarrow M=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(\Leftrightarrow M=\left(1+3+9\right)+3^3\left(1+3+9\right)+....+3^{98}\left(1+3+9\right)\)

\(\Leftrightarrow M=13+3^3\cdot14+....+3^{98}\cdot14\)

\(\Leftrightarrow M=13\left(1+3^3+....+3^{98}\right)\)

=> M chia 13 dư 0