Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2 mũ 0+2 mũ 1 + 2 mũ 2 + 2 mũ 3)+...+(2 mũ 97+2 mũ 98+2 mũ 99+2 mũ 100)
=( 1 + 2 + 4 + 8 )+...+(2 mũ 97x1+2 mũ 97x2 +2 mũ 97x4+2 mũ 97x8)
= 15 +...+ 2 mũ 97x(1+2+4+8)
= 15 +...+2 mũ 97x15
chia hêt cho 15 dư 0
mk chỉ làm đc câu a) bài 1 thôi nha !
Bài 1 .
Ta có :
a) A = (2+22)+(23+24)+...+299+2100
=> A = (1+2).21+(1+2).23+...+(1+2).299
=> A = 3.(21+23+...+299) \(⋮\)3
=> A \(⋮\)3
A = 2 + 22+ 23+........+ 2100 2A = 2. ( 2 + 22+23+..........+ 2100 ) 2A = 2.2+ 2.22+2.23+.........+ 2.2100 2A = 22+23+24+........+2101
Cristiano Ronaldo ko thấy đề hỏi c/m đó hay sao mà còn hỏi
Bạn vô đây tham khảo nha Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
TA CÓ:6A= 1.6+6.6+6.6^2+..........+6^1000.6
6A= 6+6^2+6^3+ +6^1000+6^1001
A=1+6+6^2+........+6^1000
6A-A=6^1001-1
vì 6^1001 chia hết cho 6:;1 chia 6 dư 5 suy ra A chia 6 dư 5
\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)
\(=1+2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(=3+2^2.\left(1+2+4\right)+...+2^{98}.\left(1+2+4\right)\)
\(=3+7.\left(2^2+2^5+...+2^{98}\right)\)chia 7 dư 3
\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)
\(S=\left(2^0+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{98}+2^{99}+2^{100}\right)\)
\(S=\left(1+2+4\right)+2^3\left(1+2+4\right)+.....+2^{98}\left(1+2+4\right)\)
\(S=7+2^3\cdot7+....+2^{98}\cdot7\)
\(S=7\left(1+2^3+...+2^{98}\right)\)
=> S chia 7 dư 0 hay S chia hết cho 7
Mình chỉ biết làm ý a thôi :)
S = 21 + 22 + 23 + ... + 299 + 2100
S = ( 21 + 22 ) + ... + ( 299 + 2100 )
S = 21( 1 + 2 ) + ... + 299 ( 1 + 2 )
S = 21 . 3 + ... + 299 . 3
S = 3( 21 + ... + 299 ) chia hết cho 3
cho \(M=1+3+3^2+...+3^{99}+3^{100}\)
=>\(M=1+\left(3+3^2+3^3\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=>M=1+3\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=>M=1+13\left(3+...+3^{98}\right)\)
Mà \(13\left(3+3^{98}\right)⋮13\)
=> M chia cho 13 dư 1
+) \(M=1+3+3^2+...+3^{99}+3^{100}\)
\(\Leftrightarrow M=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(\Leftrightarrow M=\left(1+3+9\right)+3^3\left(1+3+9\right)+....+3^{98}\left(1+3+9\right)\)
\(\Leftrightarrow M=13+3^3\cdot14+....+3^{98}\cdot14\)
\(\Leftrightarrow M=13\left(1+3^3+....+3^{98}\right)\)
=> M chia 13 dư 0