Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A có nghĩa\(\Leftrightarrow x-y\ne0\Leftrightarrow x\ne y\)
b) \(A=\frac{x+y-2\sqrt{xy}}{x-y}=\frac{\left(\sqrt{x-\sqrt{y}}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
Ta có:
\(P=\frac{ab}{\sqrt{c+ab}}+\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ca}}\)
\(=\frac{ab}{\sqrt{1-a-b+ab}}+\frac{bc}{\sqrt{1-b-c+bc}}+\frac{ca}{\sqrt{1-a-c+ca}}\)
\(=\frac{ab}{\sqrt{\left(1-a\right)\left(1-b\right)}}+\frac{bc}{\sqrt{\left(1-b\right)\left(1-c\right)}}+\frac{ca}{\sqrt{\left(1-c\right)\left(1-a\right)}}\)
\(\le\frac{a^2}{2\left(1-a\right)}+\frac{b^2}{2\left(1-b\right)}+\frac{b^2}{2\left(1-b\right)}+\frac{c^2}{2\left(1-c\right)}+\frac{c^2}{2\left(1-c\right)}+\frac{a^2}{2\left(1-a\right)}\)
\(=-\left(\frac{a^2}{a-1}+\frac{b^2}{b-1}+\frac{c^2}{c-1}\right)\)
\(\le-\frac{\left(a+b+c\right)^2}{a+b+c-3}=\frac{1}{3-1}=\frac{1}{2}\)
Vậy GTLN là \(P=\frac{1}{2}\) khi \(a=b=c=\frac{1}{3}\)
Biến đổi một chút, ta có:\(\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{a\left(a+b+c\right)+bc}}\)
\(=\sqrt{\frac{bc}{a+bc}}\cdot\sqrt{\frac{bc}{c+a}}\le\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right)\)
Tương tự cho 2 BĐT còn lại ta có:
\(\frac{ca}{\sqrt{b+ca}}\le\frac{1}{2}\left(\frac{ca}{a+b}+\frac{ca}{b+c}\right);\frac{ab}{\sqrt{c+ab}}\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{a+b}\right)\)
Cộng ba bất đẳng thức trên lại theo vế, ta có:
\(\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ca}}+\frac{ab}{\sqrt{c+ab}}\le\frac{1}{2}\left(a+b+c\right)=\frac{1}{2}\)
Áp dụng bđt Cô-si: \(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=\frac{2}{c}\)
\(\frac{b}{ac}+\frac{c}{ab}\ge2\sqrt{\frac{b}{ac}.\frac{c}{ab}}=\frac{1}{a}\)
\(\frac{c}{ab}+\frac{a}{bc}\ge2\sqrt{\frac{c}{ab}.\frac{a}{bc}}=\frac{1}{b}\)
cộng vế với vế ta được \(2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
=>\(A=\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=2
Vậy minA=3/2 khi a=b=c=2
\(A^2=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+2\left(b^2+c^2+a^2\right)=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+2\)
Áp dụng Côsi: \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}\ge2\sqrt{\frac{a^2b^2}{c^2}.\frac{b^2c^2}{a^2}}=2\sqrt{b^4}=2b^2\)
Tương tự \(\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}\ge2c^2;\text{ }\frac{c^2a^2}{b^2}+\frac{a^2b^2}{c^2}\ge2a^2\)
\(\Rightarrow2\left(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}\right)\ge2\left(a^2+b^2+c^2\right)=2\)
\(\Rightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}\ge1\)
\(\Rightarrow A^2\ge1+2=3\)
\(\Rightarrow A\ge\sqrt{3}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{\sqrt{3}}\)