\(\frac{a}{9a^3+3b^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

Áp dụng BĐT Bunhiacopxky :

\(\left(9a^3+3b^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2=1\)

\(\Rightarrow9a^3+3b^2+c\ge\frac{1}{\frac{1}{9a}+\frac{1}{3}+c}\)

\(\Rightarrow\frac{a}{9a^3+3b^2+c}\le a\left(\frac{1}{9a}+\frac{1}{3}+c\right)\)

Thực hiện tương tự với các phân thức khác và cộng theo vế :
\(P\le\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{a+b+c}{3}+\left(ab+bc+ac\right)\)

\(P\le\frac{2}{3}+ab+bc+ac\)

Theo hệ quả quen thuộc của BĐT AM - GM :

\(ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(\Rightarrow P\le\frac{2}{3}+\frac{1}{3}=1\Rightarrow P_{max}=1\)

Vậy GTLN của P là 1 khi \(a=b=c=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Bài tương tự bài dưới đây:

Câu hỏi của Nguyễn Đặng Việt Tuấn - Toán lớp 9 | Học trực tuyến

Ta chứng minh được:

\(\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+b}\leq \frac{2}{3}+ab+bc+ac\)

\(\Rightarrow P\leq \frac{2}{3}+2019(ab+bc+ac)\)

\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\)

\(\Rightarrow P\leq \frac{2021}{3}\) hay \(P_{\max}=\frac{2021}{3}\)

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((9a^3+3b^2+c)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\geq (a+b+c)^2=1\)

\(\Rightarrow 9a^3+3b^2+c\geq \frac{1}{\frac{1}{9a}+\frac{1}{3}+c}\)

\(\Rightarrow \frac{a}{9a^3+3b^2+c}\leq a\left(\frac{1}{9a}+\frac{1}{3}+c\right)\)

Thực hiện tương tự với các phân thức khác và cộng theo vế:

\(\Rightarrow P\leq \frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{a+b+c}{3}+(ab+bc+ac)\)

\(P\leq \frac{2}{3}+ab+bc+ac\)

Theo hệ quả quen thuộc của BĐT AM-GM:

\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\)

\(\Rightarrow P\leq \frac{2}{3}+\frac{1}{3}=1\Rightarrow P_{\max}=1\)

Vậy GTLN của $P$ là $1$ khi \(a=b=c=\frac{1}{3}\)

28 tháng 5 2020

Ta có: \(\frac{1+3a}{1+b^2}=\left(1+3a\right).\frac{1}{1+b^2}=\left(1+3a\right)\left(1-\frac{b^2}{1+b^2}\right)\)

\(\ge\left(1+3a\right)\left(1-\frac{b^2}{2b}\right)=\left(1+3a\right)\left(1-\frac{b}{2}\right)\)

\(=3a+1-\frac{b}{2}-\frac{3ab}{2}\)(1)

Tương tự ta có: \(\frac{1+3b}{1+c^2}=3b+1-\frac{c}{2}-\frac{3bc}{2}\)(2); \(\frac{1+3c}{1+a^2}=3c+1-\frac{a}{2}-\frac{3ca}{2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{1+3a}{1+b^2}+\frac{1+3b}{1+c^2}+\frac{1+3c}{1+a^2}\)\(\ge3\left(a+b+c\right)-\frac{a+b+c}{2}-\frac{3\left(ab+bc+ca\right)}{2}+3\)

\(=\frac{5\left(a+b+c\right)}{2}-\frac{3\left(ab+bc+ca\right)}{2}+3\)

\(\ge\frac{5.\sqrt{3\left(ab+bc+ca\right)}}{2}-\frac{3.3}{2}+3=\frac{15}{2}-\frac{9}{2}+3=6\)

Đẳng thức xảy ra khi a = b = c = 1

13 tháng 7 2020

Sử dụng giả thiết a + b + c = 3, ta được: \(\frac{a^3}{3a-ab-ca+2bc}=\frac{a^3}{\left(a+b+c\right)a-ab-ca+2bc}\)\(=\frac{a^3}{a^2+2bc}\)

Tương tự ta có \(\frac{b^3}{3b-bc-ab+2ca}=\frac{b^3}{b^2+2ca}\)\(\frac{c^3}{3c-ca-bc+2ab}=\frac{c^3}{c^2+2ab}\)

Khi đó thì \(P=\frac{a^3}{a^2+2bc}+\frac{b^3}{b^2+2ca}+\frac{c^3}{c^2+2ab}+3abc\)\(=\left(a+b+c\right)-\frac{2abc}{a^2+2bc}-\frac{2abc}{b^2+2ca}-\frac{2abc}{c^2+2ab}+3abc\)\(=3+abc\left[3-2\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\right)\right]\)\(\le3+abc\left[3-2.\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\right]\)(Theo BĐT Bunyakovsky dạng phân thức)\(=3+abc\left[3-2.\frac{9}{\left(a+b+c\right)^2}\right]\le3+\left(\frac{a+b+c}{3}\right)^3=4\)

Đẳng thức xảy ra khi a = b = c = 1