Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) TA CÓ :
S = 5 + 52 + 53 + 54 + ......... + 52016
=> S = (5 + 54) + (52 + 55) + ( 53 + 56) + .........+ (52011 + 52014) + (52012 + 52015) + (52013 + 52016)
=> S = 5(1 + 53) + 52(1 + 53) + 53(1 + 53) + ......... + 52011(1 + 53) + 52012(1 + 53) + 52013(1 + 53)
=> S = (1 + 53)(5 + 52 + 53 + 57 + 58 + 59 + 513 + 514 + 515 + ........... + 52011 + 52012 + 52013)
Vì 1 + 53 = 126 => S chia hết cho 126
CHỖ NÀO KHÔNG HIỂU NÓI TUI ĐỂ TUI GIẢNG LẠI CHO
5S = 5^2+5^3 + 5^4+.....+5^98
5S - S = (5^2-5^2)+(5^3-5^3) + ... + (5^97 - 5^97) + 5^98-5
4S = 5^98-5
Vậy S = \(\frac{5^{98}-5}{4}\)
a/ Ta có:S = 5+5^2+5^3+5^4+......+5^96+5^97
=>5S=5^2+5^3+5^4+....+5^97+5^98
=>5S-S=5^98-5
=>4S=5^98-5
=>S=5^98-5/4
a) S=(5+52+53+54+55+56)+...+(591+592+593+594+595+596)S=(5+52+53+54+55+56)+...+(591+592+593+594+595+596)
=5(1+5+52+53+54+55)+...+591(1+52+53+54+55)=5.3906+...+591.3906=3906(5+...+596)=3.126(5+...+591)=5(1+5+52+53+54+55)+...+591(1+52+53+54+55)=5.3906+...+591.3906=3906(5+...+596)=3.126(5+...+591)
chia hết cho 126126.
b) Do S là tổng các lũy thừa có cơ số là 5.
Cho nên mỗi lũy thừa đều tận cùng là 5.
Mà S có tất cả 96 số như vậy. Nên chữ số tận cùng của S là 0
duyệt đi olm
a,S=5+52+53+..........+596
S=(5+52+53+54+55+56)+.............+(591+592+593+594+595+596)
S=5.(1+5+52+53+54+55)+............+591.(1+5+52+53+54+55)
S=5.31.126+..............+591.31.126
S=(5.31+..............+591.31).126 chia hết cho 126(Đpcm)
b,5S=52+53+54+55+...............+597
5S-S=4S=597-5
S=\(\frac{5^{97}-5}{2}\)
Mà 597-5=(54)24.5-5=062524.5-5=....0625.5-5=..........3125-5=.........3120
=>S=.........3120:2
=>S=............0
a, A = 5 + 5^2 + 5^3 + ... + 5^2015 + 5^2016
5A = 5^2 + 5^3 + 5^4 + ... + 5^2016 + 5^2017
5A - A = 5^2 + 5^3 + 5^4 + .. + 5^2016 + 5^2017 - 5 - 5^2 - 5^3 - ... - 5^2015 - 5^2016
4A = 5^2017 - 1
A = \(\frac{5^{2017}-5}{4}\)
Tự nghĩ tiếp nha
b, 4 .A + 5 = \(4\cdot\frac{5^{2017}-5}{4}+5=5^{2017}-5+5=5^{2017}\)
=> x = 2017
a) \(S=5+5^2+5^3+...+5^{2006}\)
\(5S=5^2+5^3+5^4+...+5^{2007}\)
\(5S-S=\left(5^2+5^3+5^4+...+5^{2007}\right)-\left(5+5^2+5^3+...+5^{2006}\right)\)
\(4S=5^{2007}-5\)
→ \(S=\frac{5^{2007}-5}{4}\)
b) \(S=5+5^2+5^3+...+5^{2006}\)
\(=\left(5+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{2003}+5^{2006}\right)\)
\(=5\left(1+5^3\right)+5^2\left(1+5^3\right)+...+5^{2003}\left(1+5^3\right)\)
\(=5\cdot126+5^2\cdot126+...+5^{2003}\cdot126\)
\(=\left(5+5^2+...+5^{2003}\right)\cdot126\) chia hết cho \(126\)
Vậy \(S\) chia hết cho \(126\)