K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2015

a) B = 1 + 4 + 42 + ... + 4100

4B = 4 + 42 + ... + 4101

4B - B = 4101 - 1

3B = 4101 - 1

=> 4101 - 1 + 1 = 4n

=> 4101 = 4n

=> n = 101

 

17 tháng 9 2019

A)\(M=1+3+3^2+...+3^9\)\(\Rightarrow3M=3+3^2+3^3+...+3^{10}\)\(\Rightarrow3M-M=\left(3+3^2+3^3+...+3^{10}\right)-\left(1+3+3^2+...+3^9\right)\)

\(\Rightarrow2M=3^{10}-1\)\(\Rightarrow2M+1=3^{10}\)\(\Rightarrow n=10\)

B) \(A=1+4^2+...+4^{99}\)\(\Rightarrow4A=4+4^3+4^4+...+4^{100}\)\(\Rightarrow4A-A=\left(4+4^3+4^4+...+4^{100}\right)-\left(1+4^2+...+4^{99}\right)\)

\(\Rightarrow3A=4^{100}+4-4^2-1\Rightarrow3A=4^{100}-13\Rightarrow3A+13=4^{100}\Rightarrow n=100\)

11 tháng 12 2016

Câu e đó nấy bạn, mik ghi thiếu đề, đáng lẽ là Chứng tỏ 2S +1 là lũy thừa của 3, sửa lại giúm mik nhoa

25 tháng 12 2016

bn ko lm thì thôi đừng như thế chứ

26 tháng 12 2016

mình làm ý nào cũng được nha

7 tháng 5 2016

1. Ta có:

3A = 3^2 + 3^3+3^4+...+3^101

=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)

<=> 2A= 3^101-3

=> 2A +3 = 3^101

Mà 2A+3=3^n

=> 3^101 = 3^n => n=101

7 tháng 5 2016

2. M=3+32+33+34+...+3100

=>3M=32+33+34+35+...+3101

=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé) 

=>   M=\(\frac{3^{101}-3}{2}\)

a) Ta co : 3101=(34)25 .3=8125.3

Bạn học đồng dư thức rồi thì xem:

  Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)

=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8

=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)

Ma M=3101-3 chia hết cho 3                              (2)

Từ (1) và (2) => M chia hết cho 12

b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)

=> 3101-3 +3 =3n

=> 3101=3n=> n = 101

     

                                   

26 tháng 3 2016

2555555555555555555555555